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ABSTRACT 
Today’s signature-based intrusion detection systems are reactive 
in nature and storage-limited. Their operation depends upon 
catching an instance of an intrusion or virus and encoding it into a 
signature that is stored in its anomaly database, providing a 
window of vulnerability to computer systems during this time. 
Further, the maximum size of an Internet Protocol-based message 
requires the database to be huge in order to maintain possible 
signature combinations. In order to tighten this response cycle 
within storage constraints, this paper presents an innovative 
Artificial Immune System-inspired Multiobjective Evolutionary 
Algorithm. This distributed intrusion detection system (IDS) is 
intended to measure the vector of tradeoff solutions among 
detectors with regard to two independent objectives: best 
classification fitness and optimal hypervolume size. Our antibody 
detectors promiscuously monitor network traffic for exact and 
variant abnormal system events based on only the detector’s own 
data structure and the application domain truth set, responding 
heuristically. Applied to the MIT-DARPA 1999 insider intrusion 
detection data set, our software engineered algorithm correctly 
classifies normal and abnormal events at a high level which is 
directly attributed to a detector affinity threshold. 

Categories and Subject Descriptors 
D.1.5 [Programming Techniques]: Object-oriented 
Programming. 
D.2.11 [Software Engineering]: Software Architectures – 
Patterns. 
I.5.4 [Pattern Recognition]: Applications – text processing. 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – Heuristic methods. 
I.6.8 [Simulation and Modeling]: Types of Simulation – 
Distributed. 

 

General Terms 
Algorithms, Measurement, Performance, Design, 
Experimentation, Security, Theory. 

Keywords 
Intrusion detection, computer networks, computer security, 
evolutionary computation, artificial immune system, 
multiobjective, distributed computing. 

1. PROBLEM MOTIVATION 
Signature-based intrusion detection systems (IDS) detect attacks 
by discovering exact matches between incoming data and a 
database of known attack string signatures. Their reactive nature 
and storage-limited database allows for only a subset of the 
25665535 harmful signature combinations to be catalogued for 
future detection, after an attack. These constraints define our 
algorithm’s application domain as the intrusion detection (ID) 
problem domain. Compounding these constraints, the trend of 
exact and variant nefarious signatures since 2001, through at least 
mid-2004, indicate exponential growth [1]. Thus, a more efficient 
IDS approach is required. 

The IDS method of signature string evaluation is analogous to the 
Boolean Satisfiability Problem (SAT): the enumeration (or 
exhaustion) of a search space of n variables against a function to 
determine which variables return true from that function [2]. The 
SAT defines our formal problem classification to be 
Nondeterministic Polynomial time (NP)-Hard, preventing it from 
being solved in polynomial time [3]. Inability to solve in 
polynomial time leads to the inability to solve ID 
deterministically as required in real-time IDS operation.. Because 
signature-based IDSs are deterministic, they become infeasible 
and we must consider a stochastic approximation solution, such as 
an evolutionary algorithm (EA) that possesses the unique ability 
to generate solutions in polynomial time.  

In  particular, we chose to integrate a multiobjective EA (MOEA) 
with an artificial immune system resulting in an innovative 
software engineered IDS [4].  In presenting this development, the 
project goals are defined in Section 2, the IDS design is discussed 
in Section 3, with experimental results and analysis presented in 
Section 4. 
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2. HYPOTHESIS1 
One evolutionary algorithm (EA) of choice is the artificial 
immune system (AIS) because the IDS architecture is similar to 
the human biological immune system (BIS): a parallel and 
distributed adaptive system [5] for detecting and destroying 
antigens. In addition, we pursue a multiobjective approach 
because the consolidation of information into a single aggregated 
objective tends to lose data granularity and offer the decision-
maker only one solution vice a set of trade-off solutions. The 
solution approach develops a new proof-of-concept algorithm that 
advances the existing work of two AIS-motivated algorithms: 
Edge, Lamont and Raines’ retrovirus algorithm (REALGO) [6] 
for its ability to escape local optima, with regard to string 
matching, and Coello and Cortés’ multiobjective immune system 
algorithm (MISA) [5] for its employment of an AIS in a 
multiobjective EA context. 
Our hypothesis is that the integration of REALGO and MISA, 
applied to an ID data set, validates an AIS-inspired multiobjective 
evolutionary algorithm (MOEA). This MOEA provides a set of 
tradeoff solutions with regard to the measurement of two 
independent objectives seeking a global minimum: highest 
network traffic classification fitness and optimal detector 
hypervolume. This hypothesis is composed of four measurable 
objectives: 
1. Validate the migration of C language-based REALGO and 

MISA into their Java equivalents; 
2. Attain the highest correct classification rate possible. A 

heuristic-based positive value is assessed for any outcome, 
increasing the fitness score of the first objective of highest 
classification fitness. The higher a detector’s effectiveness, 
the lower this objective’s sum score is; 

3. Identify a known optimal detector hypervolume. Research 
shows detector effectiveness is impacted by hypervolume of 
a particular size [7,8]. We seek detectors that do not stray 
from the pre-determined negative selection affinity 
threshold; hence, the lowest deviation score for our second 
objective; 

4. Validate AIS cooperative communication within a distributed 
environment. As AIS detectors are rewarded for correct 
classification and detection, the AIS broadcasts its fittest 
detectors to listening AISs, for possible inclusion into their 
population. Validation is observation of this operation. 

 
Upon termination of our algorithm, two vectors compose each 
objective’s score for the set of surviving detectors in the 
population, which each detector is a solution point. By definition, 
multiobjective algorithms produce multiple solutions which may 
not be optimal for each objective [10]. By adjusting one solution 
for greater optimality, we risk decreasing the desired value of one 
or more other solutions. Thus, we desire a set or subset(s) of 
nondominated solutions through Pareto Optimality (P*). A 
solution point is considered Pareto-optimal (in a global-minimum 
context) if each of its objective’s values is less-than-or-equal to 
all solution point objective values and it has at least one value, in 
any objective, smaller than any other solution point’s value for 
that objective [9]. This set of Pareto-optimal points represents the 
Pareto Front (PF*) of fittest (non-dominated) detectors that is 

 
 

provided to the decision-maker, giving that person more options 
in selecting solution points for future ID domain employment 
based on the classification-to-hypervolume tradeoff depicted by 
the true PF*. 

3. HIGH AND LOW LEVEL DESIGN 
Our IDS algorithm is the methodical integration of the 
foundational AIS framework, a MOEA and a modification of that 
EAs standard operators by REALGO and MISA [4]. The design 
approach employs good software engineering practice. Timmis 
and De Castro define a standardized AIS framework where the 
engineered solution is application domain-specific (see Figure 1) 
[10]. This framework can be thought of as a layered approach. 
The basis for an AIS begins with the pre-defined application 
(problem) domain, which governs the method of representation. 
Once chromosome data structure representation (e.g., bit string, 
real-valued vector, length, etc.) is decided, one or more affinity 
measures are used to quantify interactions of the system’s 
elements; e.g., Hamming distance measurements applies to bit 
string representation while Euclidian distance is applied to real-
valued vectors. The top layer, immune algorithms, encompasses 
those functions that govern the behavior (dynamics) of the 
system; e.g., method of mutation, selection, evaluation, etc. 
Addressing these layers leads to a engineered domain-specific 
solution. 
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Figure 1. Timmis’ AIS framework [10] 

 

3.1 Application Data Domain 
The application domain is composed of week one and two of the 
MIT-DARPA (LL) 1999 insider intrusion detection data set [11] 
because it currently constitutes the largest publicly available 
benchmark of network traffic [12]. The first week consists of 
normal (self)-only traffic, facilitating negative selection. The 
second week totals 7.2 million packets composed of 99.25% self 
and 0.75% labeled attacks (non-self), of which we evaluate the 
entire week. 

3.2 Antigen and Antibody Representation 
The data structure that composes each antigen (Ag) data set 
record and antibody (Ab) detector chromosome is a fixed integer 
array with binary allele values that define the chromosome’s 
location in the search space. We chose this data structure because 
it was (conveniently) the same type employed by both REALGO 
and MISA. 
The Abs for network intrusion are generated and trained in the 
same manner as in anti-virus detectors [13]. However, network 



intrusion Ags are longer and segregated because they utilize the 
IP packet structure for its template. For this reason, we constrain 
our ID domain to encode Ags from network packets wrapped in 
the three most common IP protocols utilized by non-self: TCP, 
UDP and ICMP. Decimal-value header information from each 
incoming Ag’s packet header field is encoded into its binary 
equivalent and concatenated to the end of its string. Hence, each 
Ag’s IP∪ (TCP∨ UDP∨ ICMP) header results in a Ag TCP, 
UDP or ICMP binary DNA chromosome, respectively (Figure 2). 
Ab chromosomes are composed of three parts: its DNA (binary), 
RNA (binary) and seven state attributes (integer) (see Figure 3). 
Its DNA is generated by negative selection and the only portion 
of the Ab to be computed against the Ag. Its RNA is its DNA 
replica, facilitating the REALGO method of escaping local 
optima through RNA reverse transcription modeling [5]. If the 
mutated DNA results in a higher fitness than last time, its DNA is 
replicated to its personal memory space called RNA. If the fitness 
is worse, the DNA reverts to its last best fitness RNA to purpose 
mutation “in a different direction.” Finally, there are seven 
parameters: λ  name, α  number of false detections, ρ   

(true positive + true negative) fitness score, φ   (false positive 
+ false negative) fitness score, η   deviation from negative 

selection-defined affinity threshold (determining volume), β   
broadcasted (yes/no), ψ   number of Abs that Pareto-dominate 
this Ab. 

 

 
Figure 2. Ag chromosomes are formed through IP (shown), 
TCP, UDP and ICMP packet header field decimal values. 
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Figure 3. Ab chromosome (DNA∪ RNA∪ parameters). 

 

Because our DNA is composed of a bit string data structure, our 
affinity measure is Hamming distance (Equation 1). We choose 
Hamming distance over the r-contiguous bit rule or other 
measures because we’re pattern-matching the entire context of 
each Ag packet vs. particular contiguous IP fields [11]: 
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3.3 Immune Algorithm 
Integrating REALGO’s RNA transcription into the evaluation 
operator and the MISA framework, including its evaluation, 
selection and mutation operators, we have the pseudocode for our 
algorithm we call jREMISA: the Java retrovirus-inspired MISA 
(Algorithm 1). REALGO and MISA do not employ crossover 
because of the sufficiency of mutation to move Abs throughout 
the search space. In addition, crossover can break good building 
blocks. 

 

1 procedure jREMISA 
2 begin 
3 repeat 
4      Randomly generate initial TCP, UDP, ICMP 

Populations (Pp) 
5      Initialize empty secondary Population (Ps) 
6 negative_selection(Pp,data_setclean,threshold) /* Eval 1 */ 
7 until (end of data_setclean) 
8 repeat 
9      fitness function (ag) /* evaluation_2 */ 
10      mutationCauchy(Pp) 
11      P_optimality() /* evaluation_3 */ 
12      clonalSelection(0.05) 
13      mutationUniform(Ps) 
14      Pp  Ps  /* copy best of Ps as next gen’s Pp */ 
15      if (networking) 
16           broadcast(Ps)  /* offer nondominateds to all AISs */ 
17           processReceived()  /* Any captured Abs? */ 
18      endif 
19 until (end of data_setattack) 
20 end 

Algorithm 2. jREMISA AIS-inspired MOEA. 
 

Algorithm 2, lines 3-7, which equates to Algorithm 1, lines 3-5, 
consist of negative selection where Abs are randomly generated 
and evaluated against every Ag of a self-only day of traffic, given 
a predefined affinity threshold percentage. If an Ab reacts to self, 
it is discarded without replacement. In doing this, we are assured 
that the remaining population at algorithm termination does not 
react to a single packet of the day’s traffic. Post-negative 
selection consists of Algorithm 2, lines 8-19, which equates to 
Algorithm 1, lines 6-12. These lines are summed up in Figure 4 
where each Ag entering the evaluation window represents a new 
generation. We partition our primary population (popp) by IP 
protocol for two reasons: efficiency is increased by evaluating the 
Ag only against a subset of popp and pattern-matching becomes 
more relevant. E.g., TCP, UDP and ICMP don’t all share the same 
chromosomal structure, as their IP fields differ; hence, it doesn’t 
make sense to compare a TCP Ab to a non-TCP Ag. 
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Figure 4. Transient (data set) Ags evaluated against its IP 
protocol-matching Ab. 

 
When the Ag enters the window, the following occurs (per 
Algorithm 2): 

• FITNESS FUNCTION (line 9): Hamming distance H is 
computed between the Ab and Ag DNA signature. Combined 
with the affinity threshold and truth set informing whether 
this Ag is self or non-self, one of four outcomes results: 

o True negative (Ag Ab self): penalize first 
objective (obj1) fitness += H, copy DNA to RNA, 
reward second objective (obj2) += 1%; 

o True positive (Ag Ab non-self): penalize obj1 
+= (Aglength – H), copy DNA to RNA, reward obj2 
+= 1%; 

o False negative (Ag self, Ab non-self): 
falseDetections++, revert DNA to RNA, penalize 
obj2 -= 1%; 

o False positive (Ag non-self, Ab self): 
falseDetections++, revert DNA to RNA, penalize 
obj2 -= 1%. 

Both true negative and positive outcomes are penalized 
because, if true negative, H should ideally equal zero. If not, 
obj1’s value is increased by the number of complimentary 
alleles (H). If true positive, then H should ideally equal the 
length of the Ag. If not, obj2’s value is increased by the 
number of non-complementary alleles; 

• CAUCHY MUTATION (line 10): REALGO suggests 
Cauchy mutation to move Abs around the landscape. We 
perform it upon all penalized Ab alleles; 

• P*-TEST (line 11): all Abs undergo a Pareto-optimality test 
to determine the number of Abs each is dominated by. 
Quicksort then ascending-sorts them; 

• MISA’s CLONAL SELECTION PRINCIPLE (lines 12-14): 
elitist selection copies the top 5% of nondominated Abs from 
their popp to their respective secondary (or external) 
population (pops) meant to contain only nondominated Abs. 
Copied Abs are cloned to 600% the pops size. All copied and 
cloned Abs are then mutated in n-random allele positions, 
where n  is the number of objectives (two) plus their 
Pareto-dominance value. Following, any popp Abs lost to 
reaching the max number of false detections is replaced by 
the fittest Abs from the pops in order to return the popp to its 
original size. Finally, the pops is culled for only 
nondominated Abs; 

• AD-HOC NETWORKING (optional): if enabled, newly 
discovered nondominated Abs copied to the pops are 
broadcast to the subnet where listening jREMISAs capture 
and add to their pops only if it dominates their entire pops 
(see Figure 5). 

This process defines one generation and recurs for the number of 
data set packets. 

Data set (network traffic)
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Figure 5. jREMISA distributed communication architecture. 

The software engineering of jREMISA in design and 
implementation used various paradigms; Model-View-Controller, 
UML Class Diagram, and Design Patterns[4]. jREMISA was 
developed in the Eclipse2 open-source Integrated Development 
Environment (IDE). 

4. EXPERIMENTATION AND ANALYSIS 
Based upon the objectives of Section 2, the experiments are 
divided into three parts: 
1. validation of the C-to-Java migration of REALGO and 

MISA; 
2. jREMISA effectiveness measurement against the LL data set 

in 13 scenarios: 10 standalone, involving all days of week 
two, and three distributed island model executions in a two-, 
three- and four-jREMISA configuration; 

3. statistically comparing jREMISA against other algorithms 
applied to the same data set. 

In the distributed configuration, four computers with Windows 
XP Professional 2002, Service Pack 2 were used: 

• “PC1”  Dell Inspiron 710m laptop, 2 GHz Pentium-M, 2 
GB of RAM; 

• “PC2”  Dell XPS laptop, 3.4 GHz Pentium-4 
HyperThreading, 1 GB RAM; 

• “PC3”  Dell Precision laptop, 1.8 GHz Pentium-4, 512 
MB RAM; 

• “PC4”  Dell Optiplex GX270 tower, 2.6 GHz Pentium-4, 
512 MB RAM. 

The C-to-Java migration experiment is straightforward, yet we are 
concerned about the impact of a different programming language 
and random number generator on the output. Figure 6 compares 
the output between REALGO and jREALGO, employing 
REALGO’s Yao and Liu’s test function [6]where the optimal 
value is -12569.5. Figure 7 compares the output between MISA 

                                                                 
2 The Eclipse project, www.eclipse.org. 



and jMISA, employing MISA’s Kita-proposed two-variable test 
function [5]. 
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Figure 6. REALGO vs. jREALGO: (a) after 450 generations; 
(b) after 5000 generations. 
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Figure 7. (a) MISA and jMISA PF vs. MISA’s true PF*; (b) 
Euclidian distance measure of MISA and jMISA points from 

MISA’s true PF*. 
 
While Figure 7(a) shows MISA and jMISA’s known PF to be 
almost identical, Figure 7(b)’s Euclidian distance measurement of 
each point shows that while MISA has the preponderance of 
points closer to true PF*, jMISA possesses the few points closest 
to true PF*. Therefore, based on the comparison of REALGO to 

jREALGO and MISA to jMISA, we conclude this experiment 
validated. 
Mapping the LL truth set of labeled-attacks to the Ethereal3-
analyzed five days of labeled attacks, 16 context-based attacks are 
extracted (Figure 8). 
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Figure 8. LL 1999 week-two insider data set landscape with 

labeled attacks. 
 
In comparing our results to Williams’ Warthog [14], the surviving 
TCP popps should be in the range of Warthog’s experimentally-
employed Abs: between 32 and 2048. Table 1 shows that this Ab 
range requires the affinity threshold between 37-42%. In Table 2, 
scenarios 1-6 show our Ab effectiveness based on each threshold. 
Since scenario 4 has the combined highest classification and 
lowest false detection rate, we use that 39% threshold to compare 
it to the remaining days of the week (scenarios 7-10). In Table 3, 
we employ this same threshold to the distributed tests, differing 
only by the number of partitions in the data set decomposition. 
Figure 10(a) shows the scenario-four TCP pops. This PF* is 
provided for all three populations for each MOEA execution. Its 
intent is to show the tradeoff between each Abs fitness score and 
affinity threshold deviation. For all five days of the week, all 
three pops PF* had Abs in the +(4-5)% range 73% of the time. In 
addition, Abs were concentrated in this same range 87% of the 
time. Figure 10(b) shows an attack graph where each Ab plots its 
classification declaration for each attack. The x-axis indicates the 
outcome while the y-axis represents the packet number, mapping 
the attack. Here, there are no points on the false positive side for 
two attacks, indicating a 0% false positive rate for LL attack #26 
and #29. While not shown, jREMISA also optimally discovered 
LL attacks #7 and #22. 
Figure 11 depicts a snapshot of PC1 in scenario 11 where PC1 has 
broadcast Abs and decided to reject an incoming Ab received 
from PC2. Figure 15 shows how our algorithm does better than 
Warthog with regard to the false detection rate as the number of 
Abs are increased for the week-two Thursday data set. With 
Warthog, Williams declares that as the number of Abs increases, 
so does the false positive rate. However, our experiments show 
that as we increased our Abs, the false positive rate decreased. 
Therefore, we have shown how our algorithm is more effective 
with respect to the same benchmark data set. 

                                                                 
3 Ethereal: open-source network protocol analyzer, 

www.ethereal.com. 



Figure 12 graphically depicts Table 2 with classification and false 
detection ratios having 5% variance due to the multiple trials run 
of the same scenario to maximize statistical accuracy. Figure 13 
and Figure 14 summarize the results of the distributed phase of 
our experiments. In Figure 13, a graphical depiction of Table 3, 
we discover that the sharing of nondominated Abs among 
jREMISAs did not conclusively show a synergistic increase in 
effectiveness when compared to the standalone classification 
ratio, although the two-PC configuration fared better. Figure 14 
shows the increase in efficiency as more jREMISAs participated. 
Upon the completion of either phase—negative selection or 
MOEA—jREMISA saves the resulting  
population, Pareto Front and attack graph values to a formatted 
XML file (Figure 9) 

 
Figure 9: Example post-MOEA XML output file

 
Table 1. Negative selection results for all popp starting at 4096 for Friday data set (1,467,775 packets). 

Affinity (%) Runtime(mins) End TCP survived End UDP survived End ICMP survived 
37 186.65 2663 65.015% 3737 91.235% 3707 90.503% 
38 124.20 1563 38.159% 3372 82.324% 3513 85.767% 
39 89.17 935 22.827% 2890 70.557% 3290 80.322% 
40 45.27 357 8.716% 2275 55.542% 2700 65.918% 
41 26.43 126 3.076% 2000 48.828% 2344 57.227% 
42 16.28 34 0.830% 1431 34.937% 1997 48.755% 

 

Table 2. MOEA run summary: standalone jREMISA. 
 Self Events Non-self Events 

Scen- 
ario 

Day Gener- 
ations 

Affinity 
Threshold 

TCP 
Pop 

UDP 
Pop 

ICMP 
Pop 

Runtime 
 

True 
Neg% 

False 
Neg% 

True 
Pos% 

False 
Pos% 

1 Thurs 1547710 42% 37 86 248 39.12 m 53.78 46.22 62.6 37.4 
2 “ “ 41% 106 116 284 52.48 m 67.44 32.56 68.33 31.67 
3 “ “ 40% 315 146 341 3.61 hrs 76.10 23.90 76.92 23.08 
4 “ “ 39% 966 361 810 18.21hrs 85.45 14.55 97.66 2.34 
5 “ “ 38% 1580 423 881 2.36 day 86.48 13.52 92.51 7.49 
6 “ “ 37% 2564 462 927 5.83 day 82.52 17.48 99.71 0.29 
7 Mon 1737455 39% 969 349 846 20.02 hr 85.36 14.64 99.90 0.10 
8 Tues 1571748 “ 922 362 882 18.86 hr 84.61 15.39 97.35 2.65 
9 Wed 995235 “ 920 333 798 11.69 hr 83.37 16.63 98.26 1.74 
10 Fri 1347393 “ 964 376 829 13.43 hr 83.59 16.41 96.57 3.43 

 
Table 3. MOEA run summary: distributed jREMISAs against Thursday data set. 

 Self  Events Non-self  Events 

jREMISA 
ID 

Packet range 
(1547709 total) 

TCP 
Pop 

UDP 
Pop 

ICMP 
Pop 

Runtime 
 

True 
Neg% 

False 
Neg% 

True 
Pos% 

False 
Pos% 

Scenario 11: 2 jREMISAs, 39% affinity threshold, Thursday attack data set 
PC1 1 – 773854 966 361 810 9.44hrs 
PC2 773855 – 1547709 936 344 854 9.63hrs 86.21 13.79 98.10 1.90 

Scenario 12: 3 jREMISAs, 39% affinity threshold, Thursday attack data set 
PC1 1 – 515903 966 361 810 5.09hrs 
PC2 515904 – 1031807 936 344 854 6.35hrs 
PC3 1031808 – 1547709 951 357 826 6.86hrs 

84.31 15.69 97.94 2.06 

Scenario 13: 4 jREMISAs, 39% affinity threshold, Thursday attack data set 
PC1 1 – 386927 966 361 810 4.33hrs 
PC2 386928 – 773854 936 344 854 4.63hrs 
PC3 773855 – 1160781 951 357 826 4.86hrs 
PC4 1160782 – 1547709 954 360 822 5.09hrs 

84.94 15.06 98.55 1.45 
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Figure 10. MOEA post-execution: (a) TCP pops PF*; (b) attack graph: two attacks found with 0% false positive rate. 
 

 

 
Figure 11. Snapshot of jREMISA distributed communication. 
 

Standalone Correct Classification rate of
MIT-DARPA 1999 week-two insider attack data set

99.9

85.36 84.61

97.35
98.26

83.37

97.66

85.45
83.59

96.57

80
82

84
86

88
90
92

94
96

98
100

Correct Self Correct Non-self

Classification Type at 39% Affinity Threshold

Co
rr

ec
t C

la
ss

ifi
ca

tio
n 

R
at

e 
(%

)

Mon
Tue
Wed
Thr
FriB

E
T
T
E
R

 
Figure 12. jREMISA standalone effectiveness against each 

day of the week-two insider attack data set. 
 

Standalone vs. Distributed Effectiveness: Thursday attack data set
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Figure 13. Standalone vs. distributed effectiveness against the 

week-two Thursday insider attack data set. 
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Figure 14. Data decomposition-based distributed execution: 

efficiency vs. number of executing jREMISAs. 
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False Positive Error Rate vs. Number of Antibodies:
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(b) 

Figure 15. false positive error rate trend: (a) Warthog [15] vs. 
(b) jREMISA. 

 

5. CONCLUSION 
The hypothesis was tested against four measurable goals which 
were all validated based on our experimentation. REALGO and 
MISA were successfully migrated to Java (and integrated via 
software engineering principles into jREMISA). Our algorithm 
achieved an average 83.37-85.45% self classification and 96.57-
99.90% non-self classification rate for a 39% affinity threshold. 
We observed a patterned Ab hypervolume between 0-5% above 
this threshold (making their hypervolume 39-44%) and Ab 
broadcasting and receipt. In addition, we validated our algorithm 
as performing better in at least one way over another against the 
same data set. As a bonus, jREMISA detected four attacks, 
ranging from one to 10401 non-consecutive packets, with a 0% 
false positive rate. From this, we declare this IDS as possibly the 
first validated AIS-inspired MOEA applied to the ID problem 
domain.  
Use of software engineering design paradigms provides an easily 
extendable IDS package. Future jREMISA advances include com 
pleting the KDD Cup 99 data set facilitation, evolving the Ab 

hypershape and exploring advanced negative selection 
methodologies. 
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