
An Artificial Immune System-Inspired Multiobjective
Evolutionary Algorithm with Application to the Detection

of Distributed Computer Network Intrusions
Charles R. Haag Gary B. Lamont Paul D. Williams Gilbert L. Peterson

Department of Electrical and Computer Engineering
Graduate School of Engineering and Management

Air Force Institute of Technology (AFIT)
2950 Hobson Way, Bldg. 640

WPAFB, OH, 45433-7765
charles.haag@langley.af.mil,[gary.lamont, paul.williams, gilbert.peterson]@afit.edu

ABSTRACT
Today’s signature-based intrusion detection systems are reactive
in nature and storage-limited. Their operation depends upon
catching an instance of an intrusion or virus and encoding it into a
signature that is stored in its anomaly database, providing a
window of vulnerability to computer systems during this time.
Further, the maximum size of an Internet Protocol-based message
requires the database to be huge in order to maintain possible
signature combinations. In order to tighten this response cycle
within storage constraints, this paper presents an innovative
Artificial Immune System-inspired Multiobjective Evolutionary
Algorithm. This distributed intrusion detection system (IDS) is
intended to measure the vector of tradeoff solutions among
detectors with regard to two independent objectives: best
classification fitness and optimal hypervolume size. Our antibody
detectors promiscuously monitor network traffic for exact and
variant abnormal system events based on only the detector’s own
data structure and the application domain truth set, responding
heuristically. Applied to the MIT-DARPA 1999 insider intrusion
detection data set, our software engineered algorithm correctly
classifies normal and abnormal events at a high level which is
directly attributed to a detector affinity threshold.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented
Programming.
D.2.11 [Software Engineering]: Software Architectures –
Patterns.
I.5.4 [Pattern Recognition]: Applications – text processing.
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search – Heuristic methods.
I.6.8 [Simulation and Modeling]: Types of Simulation –
Distributed.

General Terms
Algorithms, Measurement, Performance, Design,
Experimentation, Security, Theory.

Keywords
Intrusion detection, computer networks, computer security,
evolutionary computation, artificial immune system,
multiobjective, distributed computing.

1. PROBLEM MOTIVATION
Signature-based intrusion detection systems (IDS) detect attacks
by discovering exact matches between incoming data and a
database of known attack string signatures. Their reactive nature
and storage-limited database allows for only a subset of the
25665535 harmful signature combinations to be catalogued for
future detection, after an attack. These constraints define our
algorithm’s application domain as the intrusion detection (ID)
problem domain. Compounding these constraints, the trend of
exact and variant nefarious signatures since 2001, through at least
mid-2004, indicate exponential growth [1]. Thus, a more efficient
IDS approach is required.

The IDS method of signature string evaluation is analogous to the
Boolean Satisfiability Problem (SAT): the enumeration (or
exhaustion) of a search space of n variables against a function to
determine which variables return true from that function [2]. The
SAT defines our formal problem classification to be
Nondeterministic Polynomial time (NP)-Hard, preventing it from
being solved in polynomial time [3]. Inability to solve in
polynomial time leads to the inability to solve ID
deterministically as required in real-time IDS operation.. Because
signature-based IDSs are deterministic, they become infeasible
and we must consider a stochastic approximation solution, such as
an evolutionary algorithm (EA) that possesses the unique ability
to generate solutions in polynomial time.

In particular, we chose to integrate a multiobjective EA (MOEA)
with an artificial immune system resulting in an innovative
software engineered IDS [4]. In presenting this development, the
project goals are defined in Section 2, the IDS design is discussed
in Section 3, with experimental results and analysis presented in
Section 4.

Copyright 2007 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-authored
by an employee, contractor or affiliate of the U.S. Government. As
such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for
Government purposes only.

2. HYPOTHESIS1
One evolutionary algorithm (EA) of choice is the artificial
immune system (AIS) because the IDS architecture is similar to
the human biological immune system (BIS): a parallel and
distributed adaptive system [5] for detecting and destroying
antigens. In addition, we pursue a multiobjective approach
because the consolidation of information into a single aggregated
objective tends to lose data granularity and offer the decision-
maker only one solution vice a set of trade-off solutions. The
solution approach develops a new proof-of-concept algorithm that
advances the existing work of two AIS-motivated algorithms:
Edge, Lamont and Raines’ retrovirus algorithm (REALGO) [6]
for its ability to escape local optima, with regard to string
matching, and Coello and Cortés’ multiobjective immune system
algorithm (MISA) [5] for its employment of an AIS in a
multiobjective EA context.
Our hypothesis is that the integration of REALGO and MISA,
applied to an ID data set, validates an AIS-inspired multiobjective
evolutionary algorithm (MOEA). This MOEA provides a set of
tradeoff solutions with regard to the measurement of two
independent objectives seeking a global minimum: highest
network traffic classification fitness and optimal detector
hypervolume. This hypothesis is composed of four measurable
objectives:
1. Validate the migration of C language-based REALGO and

MISA into their Java equivalents;
2. Attain the highest correct classification rate possible. A

heuristic-based positive value is assessed for any outcome,
increasing the fitness score of the first objective of highest
classification fitness. The higher a detector’s effectiveness,
the lower this objective’s sum score is;

3. Identify a known optimal detector hypervolume. Research
shows detector effectiveness is impacted by hypervolume of
a particular size [7,8]. We seek detectors that do not stray
from the pre-determined negative selection affinity
threshold; hence, the lowest deviation score for our second
objective;

4. Validate AIS cooperative communication within a distributed
environment. As AIS detectors are rewarded for correct
classification and detection, the AIS broadcasts its fittest
detectors to listening AISs, for possible inclusion into their
population. Validation is observation of this operation.

Upon termination of our algorithm, two vectors compose each
objective’s score for the set of surviving detectors in the
population, which each detector is a solution point. By definition,
multiobjective algorithms produce multiple solutions which may
not be optimal for each objective [10]. By adjusting one solution
for greater optimality, we risk decreasing the desired value of one
or more other solutions. Thus, we desire a set or subset(s) of
nondominated solutions through Pareto Optimality (P*). A
solution point is considered Pareto-optimal (in a global-minimum
context) if each of its objective’s values is less-than-or-equal to
all solution point objective values and it has at least one value, in
any objective, smaller than any other solution point’s value for
that objective [9]. This set of Pareto-optimal points represents the
Pareto Front (PF*) of fittest (non-dominated) detectors that is

provided to the decision-maker, giving that person more options
in selecting solution points for future ID domain employment
based on the classification-to-hypervolume tradeoff depicted by
the true PF*.

3. HIGH AND LOW LEVEL DESIGN
Our IDS algorithm is the methodical integration of the
foundational AIS framework, a MOEA and a modification of that
EAs standard operators by REALGO and MISA [4]. The design
approach employs good software engineering practice. Timmis
and De Castro define a standardized AIS framework where the
engineered solution is application domain-specific (see Figure 1)
[10]. This framework can be thought of as a layered approach.
The basis for an AIS begins with the pre-defined application
(problem) domain, which governs the method of representation.
Once chromosome data structure representation (e.g., bit string,
real-valued vector, length, etc.) is decided, one or more affinity
measures are used to quantify interactions of the system’s
elements; e.g., Hamming distance measurements applies to bit
string representation while Euclidian distance is applied to real-
valued vectors. The top layer, immune algorithms, encompasses
those functions that govern the behavior (dynamics) of the
system; e.g., method of mutation, selection, evaluation, etc.
Addressing these layers leads to a engineered domain-specific
solution.

AIS

Solution

Application Domain

Immune
Algorithms

Affinity Measures

Representation

Figure 1. Timmis’ AIS framework [10]

3.1 Application Data Domain
The application domain is composed of week one and two of the
MIT-DARPA (LL) 1999 insider intrusion detection data set [11]
because it currently constitutes the largest publicly available
benchmark of network traffic [12]. The first week consists of
normal (self)-only traffic, facilitating negative selection. The
second week totals 7.2 million packets composed of 99.25% self
and 0.75% labeled attacks (non-self), of which we evaluate the
entire week.

3.2 Antigen and Antibody Representation
The data structure that composes each antigen (Ag) data set
record and antibody (Ab) detector chromosome is a fixed integer
array with binary allele values that define the chromosome’s
location in the search space. We chose this data structure because
it was (conveniently) the same type employed by both REALGO
and MISA.
The Abs for network intrusion are generated and trained in the
same manner as in anti-virus detectors [13]. However, network

intrusion Ags are longer and segregated because they utilize the
IP packet structure for its template. For this reason, we constrain
our ID domain to encode Ags from network packets wrapped in
the three most common IP protocols utilized by non-self: TCP,
UDP and ICMP. Decimal-value header information from each
incoming Ag’s packet header field is encoded into its binary
equivalent and concatenated to the end of its string. Hence, each
Ag’s IP∪ (TCP∨ UDP∨ ICMP) header results in a Ag TCP,
UDP or ICMP binary DNA chromosome, respectively (Figure 2).
Ab chromosomes are composed of three parts: its DNA (binary),
RNA (binary) and seven state attributes (integer) (see Figure 3).
Its DNA is generated by negative selection and the only portion
of the Ab to be computed against the Ag. Its RNA is its DNA
replica, facilitating the REALGO method of escaping local
optima through RNA reverse transcription modeling [5]. If the
mutated DNA results in a higher fitness than last time, its DNA is
replicated to its personal memory space called RNA. If the fitness
is worse, the DNA reverts to its last best fitness RNA to purpose
mutation “in a different direction.” Finally, there are seven
parameters: λ name, α number of false detections, ρ

(true positive + true negative) fitness score, φ (false positive
+ false negative) fitness score, η deviation from negative

selection-defined affinity threshold (determining volume), β
broadcasted (yes/no), ψ number of Abs that Pareto-dominate
this Ab.

Figure 2. Ag chromosomes are formed through IP (shown),
TCP, UDP and ICMP packet header field decimal values.

Parameters = 7 array elementsAb DNA = 240 elements
RNA copy of Ab =

240 elements

Random binary values

= 1= 3 = -2= 38 = 126= 20 = 210110010110 α βφ η ψλ ρ

Figure 3. Ab chromosome (DNA∪ RNA∪ parameters).

Because our DNA is composed of a bit string data structure, our
affinity measure is Hamming distance (Equation 1). We choose
Hamming distance over the r-contiguous bit rule or other
measures because we’re pattern-matching the entire context of
each Ag packet vs. particular contiguous IP fields [11]:

1

1
0{

L

i i
i

i iif Ab Ag
otherwiseH whereδ δ

=

≠= =∑ . (1)

3.3 Immune Algorithm
Integrating REALGO’s RNA transcription into the evaluation
operator and the MISA framework, including its evaluation,
selection and mutation operators, we have the pseudocode for our
algorithm we call jREMISA: the Java retrovirus-inspired MISA
(Algorithm 1). REALGO and MISA do not employ crossover
because of the sufficiency of mutation to move Abs throughout
the search space. In addition, crossover can break good building
blocks.

1 procedure jREMISA
2 begin
3 repeat
4 Randomly generate initial TCP, UDP, ICMP

Populations (Pp)
5 Initialize empty secondary Population (Ps)
6 negative_selection(Pp,data_setclean,threshold) /* Eval 1 */
7 until (end of data_setclean)
8 repeat
9 fitness function (ag) /* evaluation_2 */
10 mutationCauchy(Pp)
11 P_optimality() /* evaluation_3 */
12 clonalSelection(0.05)
13 mutationUniform(Ps)
14 Pp Ps /* copy best of Ps as next gen’s Pp */
15 if (networking)
16 broadcast(Ps) /* offer nondominateds to all AISs */
17 processReceived() /* Any captured Abs? */
18 endif
19 until (end of data_setattack)
20 end

Algorithm 2. jREMISA AIS-inspired MOEA.

Algorithm 2, lines 3-7, which equates to Algorithm 1, lines 3-5,
consist of negative selection where Abs are randomly generated
and evaluated against every Ag of a self-only day of traffic, given
a predefined affinity threshold percentage. If an Ab reacts to self,
it is discarded without replacement. In doing this, we are assured
that the remaining population at algorithm termination does not
react to a single packet of the day’s traffic. Post-negative
selection consists of Algorithm 2, lines 8-19, which equates to
Algorithm 1, lines 6-12. These lines are summed up in Figure 4
where each Ag entering the evaluation window represents a new
generation. We partition our primary population (popp) by IP
protocol for two reasons: efficiency is increased by evaluating the
Ag only against a subset of popp and pattern-matching becomes
more relevant. E.g., TCP, UDP and ICMP don’t all share the same
chromosomal structure, as their IP fields differ; hence, it doesn’t
make sense to compare a TCP Ab to a non-TCP Ag.

TCP Antibody Pool UDP Antibody Pool ICMP Antibody Pool

1010101011010001110101

01010101110110101010100101010111011010101010 0101010111011010101010

Data set
stream

Encoded ICMP Antigen Encoded UDP Antigen Encoded UDP Antigen

Random UDP
Antibody

Sliding window

All UDP Abs
(Ag)

Extracted attack
truth set

Figure 4. Transient (data set) Ags evaluated against its IP
protocol-matching Ab.

When the Ag enters the window, the following occurs (per
Algorithm 2):

• FITNESS FUNCTION (line 9): Hamming distance H is
computed between the Ab and Ag DNA signature. Combined
with the affinity threshold and truth set informing whether
this Ag is self or non-self, one of four outcomes results:

o True negative (Ag Ab self): penalize first
objective (obj1) fitness += H, copy DNA to RNA,
reward second objective (obj2) += 1%;

o True positive (Ag Ab non-self): penalize obj1
+= (Aglength – H), copy DNA to RNA, reward obj2
+= 1%;

o False negative (Ag self, Ab non-self):
falseDetections++, revert DNA to RNA, penalize
obj2 -= 1%;

o False positive (Ag non-self, Ab self):
falseDetections++, revert DNA to RNA, penalize
obj2 -= 1%.

Both true negative and positive outcomes are penalized
because, if true negative, H should ideally equal zero. If not,
obj1’s value is increased by the number of complimentary
alleles (H). If true positive, then H should ideally equal the
length of the Ag. If not, obj2’s value is increased by the
number of non-complementary alleles;

• CAUCHY MUTATION (line 10): REALGO suggests
Cauchy mutation to move Abs around the landscape. We
perform it upon all penalized Ab alleles;

• P*-TEST (line 11): all Abs undergo a Pareto-optimality test
to determine the number of Abs each is dominated by.
Quicksort then ascending-sorts them;

• MISA’s CLONAL SELECTION PRINCIPLE (lines 12-14):
elitist selection copies the top 5% of nondominated Abs from
their popp to their respective secondary (or external)
population (pops) meant to contain only nondominated Abs.
Copied Abs are cloned to 600% the pops size. All copied and
cloned Abs are then mutated in n-random allele positions,
where n is the number of objectives (two) plus their
Pareto-dominance value. Following, any popp Abs lost to
reaching the max number of false detections is replaced by
the fittest Abs from the pops in order to return the popp to its
original size. Finally, the pops is culled for only
nondominated Abs;

• AD-HOC NETWORKING (optional): if enabled, newly
discovered nondominated Abs copied to the pops are
broadcast to the subnet where listening jREMISAs capture
and add to their pops only if it dominates their entire pops
(see Figure 5).

This process defines one generation and recurs for the number of
data set packets.

Data set (network traffic)
6-Port Switch/Router

jREMISA
2

jREMISA
3

UDP
listener

UDP
listener

UDP
listener

jREMISA
1

spawned
thread

Listen
port: 1986

Listen
port: 1986

Listen
port: 1986

Broadcast
port: 1987

Broadcast
port: 1987

Broadcast
port: 1987

Ab | m
essage : UDP: 255.255.255.255

Ab | message
: UDP
: 255.255.255.255

Ab | message
: UDP
: 255.255.255.255

Ab | message Ab | message

Wall-clock time
Figure 5. jREMISA distributed communication architecture.

The software engineering of jREMISA in design and
implementation used various paradigms; Model-View-Controller,
UML Class Diagram, and Design Patterns[4]. jREMISA was
developed in the Eclipse2 open-source Integrated Development
Environment (IDE).

4. EXPERIMENTATION AND ANALYSIS
Based upon the objectives of Section 2, the experiments are
divided into three parts:
1. validation of the C-to-Java migration of REALGO and

MISA;
2. jREMISA effectiveness measurement against the LL data set

in 13 scenarios: 10 standalone, involving all days of week
two, and three distributed island model executions in a two-,
three- and four-jREMISA configuration;

3. statistically comparing jREMISA against other algorithms
applied to the same data set.

In the distributed configuration, four computers with Windows
XP Professional 2002, Service Pack 2 were used:

• “PC1” Dell Inspiron 710m laptop, 2 GHz Pentium-M, 2
GB of RAM;

• “PC2” Dell XPS laptop, 3.4 GHz Pentium-4
HyperThreading, 1 GB RAM;

• “PC3” Dell Precision laptop, 1.8 GHz Pentium-4, 512
MB RAM;

• “PC4” Dell Optiplex GX270 tower, 2.6 GHz Pentium-4,
512 MB RAM.

The C-to-Java migration experiment is straightforward, yet we are
concerned about the impact of a different programming language
and random number generator on the output. Figure 6 compares
the output between REALGO and jREALGO, employing
REALGO’s Yao and Liu’s test function [6]where the optimal
value is -12569.5. Figure 7 compares the output between MISA

2 The Eclipse project, www.eclipse.org.

and jMISA, employing MISA’s Kita-proposed two-variable test
function [5].

Fitness after 450 Generations

-12570
-12565
-12560
-12555
-12550
-12545
-12540
-12535
-12530
-12525
-12520

Category

Va
lu

e REALGO

jREALGO

B
E
T
T
E
R

best average

(a)

Fitness after 5000 generations

-12568.4

-12568.2

-12568

-12567.8

-12567.6

-12567.4

-12567.2

-12567

-12566.8

Category

Va
lu

e REALGO

jREALGO

B
E
T
T
E
R

best average

(b)

Figure 6. REALGO vs. jREALGO: (a) after 450 generations;
(b) after 5000 generations.

BETTERBETTER
(a)

BETTER
(b)

Figure 7. (a) MISA and jMISA PF vs. MISA’s true PF*; (b)
Euclidian distance measure of MISA and jMISA points from

MISA’s true PF*.

While Figure 7(a) shows MISA and jMISA’s known PF to be
almost identical, Figure 7(b)’s Euclidian distance measurement of
each point shows that while MISA has the preponderance of
points closer to true PF*, jMISA possesses the few points closest
to true PF*. Therefore, based on the comparison of REALGO to

jREALGO and MISA to jMISA, we conclude this experiment
validated.
Mapping the LL truth set of labeled-attacks to the Ethereal3-
analyzed five days of labeled attacks, 16 context-based attacks are
extracted (Figure 8).

Time
[0800-0600)

Day
[Mon-Fri]

8-12 Mar 99

#2

#5

#7

#8

#10
#17

#18

#22

#23

#25

#26

#29

#35

#36
#37

#42

LEGEND

non-self events

Figure 8. LL 1999 week-two insider data set landscape with

labeled attacks.

In comparing our results to Williams’ Warthog [14], the surviving
TCP popps should be in the range of Warthog’s experimentally-
employed Abs: between 32 and 2048. Table 1 shows that this Ab
range requires the affinity threshold between 37-42%. In Table 2,
scenarios 1-6 show our Ab effectiveness based on each threshold.
Since scenario 4 has the combined highest classification and
lowest false detection rate, we use that 39% threshold to compare
it to the remaining days of the week (scenarios 7-10). In Table 3,
we employ this same threshold to the distributed tests, differing
only by the number of partitions in the data set decomposition.
Figure 10(a) shows the scenario-four TCP pops. This PF* is
provided for all three populations for each MOEA execution. Its
intent is to show the tradeoff between each Abs fitness score and
affinity threshold deviation. For all five days of the week, all
three pops PF* had Abs in the +(4-5)% range 73% of the time. In
addition, Abs were concentrated in this same range 87% of the
time. Figure 10(b) shows an attack graph where each Ab plots its
classification declaration for each attack. The x-axis indicates the
outcome while the y-axis represents the packet number, mapping
the attack. Here, there are no points on the false positive side for
two attacks, indicating a 0% false positive rate for LL attack #26
and #29. While not shown, jREMISA also optimally discovered
LL attacks #7 and #22.
Figure 11 depicts a snapshot of PC1 in scenario 11 where PC1 has
broadcast Abs and decided to reject an incoming Ab received
from PC2. Figure 15 shows how our algorithm does better than
Warthog with regard to the false detection rate as the number of
Abs are increased for the week-two Thursday data set. With
Warthog, Williams declares that as the number of Abs increases,
so does the false positive rate. However, our experiments show
that as we increased our Abs, the false positive rate decreased.
Therefore, we have shown how our algorithm is more effective
with respect to the same benchmark data set.

3 Ethereal: open-source network protocol analyzer,

www.ethereal.com.

Figure 12 graphically depicts Table 2 with classification and false
detection ratios having 5% variance due to the multiple trials run
of the same scenario to maximize statistical accuracy. Figure 13
and Figure 14 summarize the results of the distributed phase of
our experiments. In Figure 13, a graphical depiction of Table 3,
we discover that the sharing of nondominated Abs among
jREMISAs did not conclusively show a synergistic increase in
effectiveness when compared to the standalone classification
ratio, although the two-PC configuration fared better. Figure 14
shows the increase in efficiency as more jREMISAs participated.
Upon the completion of either phase—negative selection or
MOEA—jREMISA saves the resulting
population, Pareto Front and attack graph values to a formatted
XML file (Figure 9)

Figure 9: Example post-MOEA XML output file

Table 1. Negative selection results for all popp starting at 4096 for Friday data set (1,467,775 packets).

Affinity (%) Runtime(mins) End TCP survived End UDP survived End ICMP survived
37 186.65 2663 65.015% 3737 91.235% 3707 90.503%
38 124.20 1563 38.159% 3372 82.324% 3513 85.767%
39 89.17 935 22.827% 2890 70.557% 3290 80.322%
40 45.27 357 8.716% 2275 55.542% 2700 65.918%
41 26.43 126 3.076% 2000 48.828% 2344 57.227%
42 16.28 34 0.830% 1431 34.937% 1997 48.755%

Table 2. MOEA run summary: standalone jREMISA.
 Self Events Non-self Events

Scen-
ario

Day Gener-
ations

Affinity
Threshold

TCP
Pop

UDP
Pop

ICMP
Pop

Runtime

True
Neg%

False
Neg%

True
Pos%

False
Pos%

1 Thurs 1547710 42% 37 86 248 39.12 m 53.78 46.22 62.6 37.4
2 “ “ 41% 106 116 284 52.48 m 67.44 32.56 68.33 31.67
3 “ “ 40% 315 146 341 3.61 hrs 76.10 23.90 76.92 23.08
4 “ “ 39% 966 361 810 18.21hrs 85.45 14.55 97.66 2.34
5 “ “ 38% 1580 423 881 2.36 day 86.48 13.52 92.51 7.49
6 “ “ 37% 2564 462 927 5.83 day 82.52 17.48 99.71 0.29
7 Mon 1737455 39% 969 349 846 20.02 hr 85.36 14.64 99.90 0.10
8 Tues 1571748 “ 922 362 882 18.86 hr 84.61 15.39 97.35 2.65
9 Wed 995235 “ 920 333 798 11.69 hr 83.37 16.63 98.26 1.74
10 Fri 1347393 “ 964 376 829 13.43 hr 83.59 16.41 96.57 3.43

Table 3. MOEA run summary: distributed jREMISAs against Thursday data set.

 Self Events Non-self Events

jREMISA
ID

Packet range
(1547709 total)

TCP
Pop

UDP
Pop

ICMP
Pop

Runtime

True
Neg%

False
Neg%

True
Pos%

False
Pos%

Scenario 11: 2 jREMISAs, 39% affinity threshold, Thursday attack data set
PC1 1 – 773854 966 361 810 9.44hrs
PC2 773855 – 1547709 936 344 854 9.63hrs 86.21 13.79 98.10 1.90

Scenario 12: 3 jREMISAs, 39% affinity threshold, Thursday attack data set
PC1 1 – 515903 966 361 810 5.09hrs
PC2 515904 – 1031807 936 344 854 6.35hrs
PC3 1031808 – 1547709 951 357 826 6.86hrs

84.31 15.69 97.94 2.06

Scenario 13: 4 jREMISAs, 39% affinity threshold, Thursday attack data set
PC1 1 – 386927 966 361 810 4.33hrs
PC2 386928 – 773854 936 344 854 4.63hrs
PC3 773855 – 1160781 951 357 826 4.86hrs
PC4 1160782 – 1547709 954 360 822 5.09hrs

84.94 15.06 98.55 1.45

BETTER

TCP True Pareto Front, Thursday, 39% affinity

Objective1: Correct Classification

O
bjective

2 : Ab A
ffinity Threshold D

eviation
O

bjective
2 : Ab A

ffinity Threshold D
eviation from

 39%

(a)

FALSE POSITIVE TRUE POSITIVE

D
ata Set Packet N

um
ber

BETTER

Non-self Detection Results, Thursday, 40% affinity

LL #26: neptune – 10401 non-consecutive packets
0% false positive

LL #29: land – 1 packet
0% false positive

(b)

Figure 10. MOEA post-execution: (a) TCP pops PF*; (b) attack graph: two attacks found with 0% false positive rate.

Figure 11. Snapshot of jREMISA distributed communication.

Standalone Correct Classification rate of
MIT-DARPA 1999 week-two insider attack data set

99.9

85.36 84.61

97.35
98.26

83.37

97.66

85.45
83.59

96.57

80
82

84
86

88
90
92

94
96

98
100

Correct Self Correct Non-self

Classification Type at 39% Affinity Threshold

Co
rr

ec
t C

la
ss

ifi
ca

tio
n

R
at

e
(%

)

Mon
Tue
Wed
Thr
FriB

E
T
T
E
R

Figure 12. jREMISA standalone effectiveness against each

day of the week-two insider attack data set.

Standalone vs. Distributed Effectiveness: Thursday attack data set

97.66

85.45

98.1

86.21

97.94

84.31

98.55

84.94

80

82

84

86

88

90

92

94

96

98

100

Correct Self Correct Non-self

Classification Type at 39% Affinity Threshold

Co
rr

ec
t C

la
ss

ifi
ca

tio
n

R
at

e
(%

)

1 PC
2 PCs
3 PCs
4 PCs

B
E
T
T
E
R

Figure 13. Standalone vs. distributed effectiveness against the

week-two Thursday insider attack data set.

Stand-alone vs. Distributed Efficiency: Thursday attack data set

9.63

6.86

4.86

18.21

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4

Number of executing jREMISAs

Ru
nt

im
e

(h
ou

rs
)

B
E
T
T
E
R

Figure 14. Data decomposition-based distributed execution:

efficiency vs. number of executing jREMISAs.

B
E
T
T
E
R

(a)

False Positive Error Rate vs. Number of Antibodies:
Thursday

31.67

23.08

2.34

7.49

0.29

37.4

0

5

10

15

20

25

30

35

40

371 (42%) 506 (41%) 802 (40%) 2137 (39%) 2884 (38%) 3953 (37%)

Number of Antibodies (Affinity Threshold)

Er
ro

r
R

at
e

(%
)

B
E
T
T
E
R

(b)

Figure 15. false positive error rate trend: (a) Warthog [15] vs.
(b) jREMISA.

5. CONCLUSION
The hypothesis was tested against four measurable goals which
were all validated based on our experimentation. REALGO and
MISA were successfully migrated to Java (and integrated via
software engineering principles into jREMISA). Our algorithm
achieved an average 83.37-85.45% self classification and 96.57-
99.90% non-self classification rate for a 39% affinity threshold.
We observed a patterned Ab hypervolume between 0-5% above
this threshold (making their hypervolume 39-44%) and Ab
broadcasting and receipt. In addition, we validated our algorithm
as performing better in at least one way over another against the
same data set. As a bonus, jREMISA detected four attacks,
ranging from one to 10401 non-consecutive packets, with a 0%
false positive rate. From this, we declare this IDS as possibly the
first validated AIS-inspired MOEA applied to the ID problem
domain.
Use of software engineering design paradigms provides an easily
extendable IDS package. Future jREMISA advances include com
pleting the KDD Cup 99 data set facilitation, evolving the Ab

hypershape and exploring advanced negative selection
methodologies.

6. REFERENCES
[1] Symantec Internet Security Threat Report, Trends for January

1, 2004 – June 30, 2004, Volume VI, September, 2004,
eval.veritas.com/mktginfo/enterprise/white_papers/ent-
whitepaper_symantec_internet_security_threat_report_vi.pdf

[2] Michalewicz, Z., Fogel, D., How to Solve It: Modern
Heuristics, Second Edition, Springer 2004.

[3] J.. Dréo, A. Pétrowski, P. Siarry, and E. Taillard,
Metaheuristics for Hard Optimization: Methods and Case
Studies, Springer-Verlag, Berlin, Germany, 2006.

[4] Haag, C.R., An Artificial Immune System-inspired
Multiobjective Evolutionary Algorithm with Application to
the Detection of Distributed Computer Network Intrusions,
M.S. Thesis, Graduate School of Engineering and
Management, Air Force Institute of Technology, WPAFB,
Dayton, OH, March, 2007

[5] Coello, C., Cortés, N., Solving Multiobjective Optimization
Problems Using an Artificial Immune System, Genetic
Programming and Evolvable Machines, Vol. 6, pp.163-190,
2005.

[6] Edge, K., Lamont, G., Raines, R., A Retrovirus Inspired
Algorithm for Virus Detection & Optimization, GECCO ’06,
July 8-12, 2006.

[7] McGee, P., Building Better Antibody Therapeutics, Drug
Discovery & Development,
www.dddmag.com/ShowPR.aspx?PUBCODE=090&ACCT=
1600000100&ISSUE=0701&RELTYPE=DEV&PRODCOD
E=00000000&PRODLETT=AG&CommonCount=0.

[8] Middlemiss, M., Positive and Negative Selection in a
Multilayer Artificial Immune System, Information Science
Discussion Paper Series, No. 2006/03, University of Otago,
January, 2006.

[9] Coello, C., Van Veldhuizen, D., Lamont, G.B., Evolutionary
Algorithms for Solving Multi-Objective Problems, Springer
2002.

[10] De Castro, L.N., Timmis, J., Artificial Immune Systems: A
New Computational Intelligence Approach, Springer 2002.

[11] MIT Lincoln Laboratory–DARPA Intrusion Detection
Evaluation, www.ll.mit.edu/IST/ideval/.

[12] Mahoney, M., Chan, P., An Analysis of the 1999
DARPA/Lincoln Laboratory Evaluation Data for Network
Anomaly Detection, Technical Report CS-2003-02,
Computer Science Department, Florida Institute of
Technology, 2003.

[13] Harmer, P., Williams, P., Gunsch, G., Lamont, G.B., An
Artificial Immune System Architecture for Computer Security
Applications, IEEE Transactions on Evolutionary
Computation, Vol. 6, No. 3, June 2002.

[14] Williams, P., WARTHOG: Towards a Computer Immune
System for Detecting “Low and Slow” Information System
Attacks, AFIT Master’s Thesis, March, 2001

