
1

Structured P2P Technologies for Distributed
Command and Control
Daniel Karrels, Gilbert Peterson, Barry Mullins

Air Force Institute of Technology
{daniel.karrels,gilbert.peterson,barry.mullins}@afit.edu

Index Terms—Multi-Agent System, Distributed System, Peer
to Peer, Large-Scale, Command and Control

Abstract—The utility of Peer-to-Peer (P2P) systems extends
far beyond traditional file sharing. This paper provides an
overview of how P2P systems are capable of providing robust
command and control for Distributed Multi-Agent Systems
(DMASs). Specifically, this article presents the evolutionof P2P
architectures to date by discussing supporting technologies and
applicability of each generation of P2P systems. It provides a de-
tailed survey of fundamental design approaches found in modern
large-scale P2P systems highlighting design considerations for
building and deploying scalable P2P applications. The survey
includes unstructured P2P systems, content retrieval systems,
communications structured P2P systems, flat structured P2P
systems and finally Hierarchical Peer-to-Peer (HP2P) overlays.
It concludes with a presentation of design tradeoffs and oppor-
tunities for future research into P2P overlay systems.

I. I NTRODUCTION

The first P2P systems were unstructured, or lacking discrete
organizational rules. They relied upon broadcast mechanisms
to locate data items, and were characteristically bandwidth
intensive. These systems suffer from scalability constraints,
although persistent efforts to improve their technology has
resulted in continued relevance. Systems such as Gnutella
[1] and Freenet [2] continue to evolve, incorporating lower
network diameter, caching, and other techniques to improve
scalability and flexibility.

Successive generations of P2P networks introduced more
structure to the system, initially focusing on content storage,
and subsequently on node organization. Content structured
systems are concerned with the efficient representation and
retrieval of information, and provide structured protocols to
identify and locate data items. These systems are often called
libraries, and index data by unique key, subject area, or range
queries. This technology serves as the reinforcing means for
unstructured systems to continue their life cycles, as wellas
leading into a more general class of P2P networks called P2P
structured overlays.

Structured overlay designs improve structured content stor-
age systems through a less drastic but important mutation:
the nodes themselves are now uniquely identified, instead
of simply the data they store. The underlying structure is

The views expressed in this article are those of the authors and do not reflect
any official policy or position of the United States Air Force, Department of
Defense, or the U.S. Government. This research is funded by the Air Force
Research Laboratory (AFRL).

based on a Distributed Hash Table (DHT), which is a dic-
tionary based approach to storing and retrieving information.
The nodes in communications structured P2P systems can
be located through this process, thus making the network
itself a DHT, regardless of the data stored in the network.
We will therefore use the terms communications structured
P2P system and DHT interchangeably, as they differ only
in application. Early structured overlays were flat, using a
single layer of peers, however recent examination of these
technologies has extended to include hierarchical formations
of structured overlays to increase scalability and flexibility.
This generation of P2P systems, both flat and hierarchical, is
the focus area of this document.

Whether hierarchical or flat, we envision the continued
pursuit of P2P systems as foundations for large-scale dis-
tributed application development. Generalized P2P application
frameworks provide the necessary network foundations upon
which to pursue this goal. Much in the way that early routing
and network communications were decoupled to form large
networks of heterogeneous applications, such as the Internet,
modern P2P systems are moving toward providing large-scale
networking functions upon which to build generic systems.
This (mostly) transparent layer provides a network Application
Programming Interface (API) for application software to use,
and the scope, method, and purpose of those applications
are unbounded. This design decouples the implementation of
communications from the application that uses it, allowing
more flexibility and sustainability. Such P2P communications
overlays can thus be interchanged with minimal effort to
provide differing capabilities to the application layer.

This paper examines P2P technologies as the organizational
component in large-scale DMASs applications. A primary
trait of these Multi-Agent Systems (MASs) is the need for
Command and Control (C2). C2, in an electronic system,
includes the methods used to organize and communicate with
nodes in a distributed system. The ability to conduct useful
C2 is highly dependent on the structures and protocols used
to organize and maintain these systems. Inefficient routing
protocols, for example, result in lower performance for ap-
plication level C2. As a first step toward developing a large-
scale C2 capable P2P overlay, this paper examines current
methods for organizing networks to establish reliable large-
scale communications using P2P systems.

Section II presents a brief definition of C2, followed by
three brief case studies to highlight several of the key features
necessary for large-scale C2. The discussion then introduces



2

P2P systems, followed by the survey taxonomy and analysis
criteria. The analysis begins with a discussion of the early
generations of P2P networks in Section VII, including un-
structured and content retrieval P2P systems. The focus area of
this document is the discussion of communications structured
P2P systems beginning in Section IX, continuing with flat and
hierarchical structured P2P systems. This document concludes
by listing design trade-offs and future work, followed by
concluding remarks in Section XIV.

II. COMMAND AND CONTROL

Command refers to the ability to issue runtime orders to a
subset of all nodes in a network. Specifically, it:

• Provides the capability to assign tasks or missions to one
or more agents.

• Schedules tasks to run in a manner that avoids contention
and deadlock, and optimizes performance.

• Permits the allocation of resources.
• Autonomously deconflicts resources at runtime, which

may involve distributed agreement.
Command, in general, involves many of the same functions

as are found in the coalition formation problem [3]. The
coalition formation problem is considered to beNP-complete,
and so building a large-scale solution requires new thinking
about an old problem.

The ability to control a set of agents involves capturing
their runtime state, and proactively and reactively responding
to changing conditions, to include the introduction of new
requirements or constraints. At its essence, control refers to:

• Monitoring the progress of tasks at runtime.
• Identifying and resolving runtime conflicts.
• Feeding updated system state into the task scheduler.
Control solutions are built upon reliable and efficient com-

munications mechanisms, and are intended to maximize effi-
ciency of the runtime system by discovering and correcting
runtime difficulties. The combination of efficient and reliable
network structures and communications mechanisms creates
an environment in which this can succeed.

This discussion is not intended to fully explore the problem
and idea spaces of achieving large-scale C2. Rather, it is a first
step toward building a solid foundation on which to construct
a working distributed C2 system. P2P systems may provide
the necessary scale and affordability for extending DMAS
research, even though they lack in certain key areas (see
Section XIII). We will discuss our motivations and analyze the
suitability of various P2P overlay approaches as the discussion
continues, and conclude with a more concise summary of our
findings in Section XIV.

III. DMAS C ASE STUDIES

Of the many applications of DMASs, we have chosen three
that serve to motivate the need for a comprehensive C2 policy
framework. These applications rely on scalable, flexible, and
reliable communications mechanisms. We believe that P2P
architectures will meet these requirements. These projects are
not meant to enumerate all scenarios in which C2 is necessary,
but only to provide through example a basic understanding of
why a scalable C2 strategy is necessary.

A. Electric Elves

The Electric Elves project [4] is an initiative to create digital
advocates for the intentions of human members of an organi-
zation. The Elves coordinate amongst each other to schedule
meetings and presentations, order lunch, make and cancel
appointments, monitor project status, and provide information
about the person they represent (such as location or prefer-
ence). The project is built upon a heterogeneous DMAS, where
each agent is capable of representing the interests and goals
of an organizational member (whether human or otherwise).
It is a novel team-based system, combining adversarial and
cooperative strategies, that must adapt to changing scenarios,
and whose members must constantly interact with other Elves
to coordinate an optimal self-interested schedule.

The project spans heterogeneous MASs, distributed coop-
erative and adversarial coordination, multi-objective optimiza-
tion, adjustable autonomy, and human interaction. The authors
of Electric Elves intend their application to scale up to large-
scale organizations, where the agents run continuously for
weeks or months to optimize the daily schedules of its mem-
bers. Such an initiative accentuates the need for distributed
C2. In particular, this project requires the scheduling of tasks,
runtime allocation and deconfliction of resources (physical in
this case), and monitoring the progress of tasks to identifyand
resolve conflicts.

B. Virtual Environments

Virtual Environments (VEs) [5] refer to systems in which
actors interact with one another and the environment in the
pursuit of some set of goals. This evolving field is gaining
momentum in many application areas, including large-scale
online gaming, education, design in the engineering industries,
interactive communications, and many others [6]. In many
scenarios, humans enter into a VE to consume or provide
services to other actors and the environment. The other actors
may themselves be representations of humans or of software
or hardware agents. The agents serve many purposes, to
include providing fundamental services for the users of the
environment. The agents must coordinate with each other to
achieve varying goals, and the environment information for
each agent may be incomplete. In particular, online games
may involve many thousands of agents who dynamically form
teams to interact with players in different parts of the VE.

These environments provide a challenging domain in which
agents must operate, and highlight the need for a comprehen-
sive C2 strategy. Agents in a VE must coordinate in real-time
to form adversarial or cooperative teams and coordinate and
schedule services. The introduction of human actors creates
a myriad of unknown scenarios to which the agents must
respond. In terms of C2, VEs provide a compelling oppor-
tunity: these systems may be centralized, decentralized, or
dynamically choose the better alternative for a given scenario.
Such heterogeneity requires a robust and well designed C2
architecture to respond to the evolving landscapes found in
VEs.



3

C. Network Routing

One of the earlier applications for DMASs is modifying
network routes to reduce bottlenecks tied to increased traffic or
hardware or software failures [7]. These systems use networks
of agents to monitor network traffic conditions at key points,
and modify the routes in realtime to correct problems or
provide differing levels of service. The agents must coordinate
these actions so as to avoid livelock1. The agents must coor-
dinate their efforts to maximize overall system performance,
which can be challenging in high traffic situations, where the
communications between agents may be delayed.

This application requires a great deal of cooperative teaming
to maximize system efficiency. Due to traffic conditions, the
agents must communicate with a robust language, and use
a reliable communications framework. The agents perform
realtime monitoring of the system, and must cooperatively
schedule the use of resources. In addition, this application
requires a suitable security strategy, and poor decisions may
have a noticeable impact to many users.

Independently, these applications define the need for specific
and challenging capabilities in distributed systems. However,
collectively, they define a subset of the principles of C2. Key
among the current and emerging requirements for such appli-
cations is scalability. P2P overlays provide the scalable com-
munications needed. P2P overlays do not currently provide the
explicit control semantics to employ coalition formation,task
allocation and scheduling, or resource distribution algorithms
in support of these applications as they increase in scale and
complexity. While this genericity provides flexibility, itis
necessary to consider the set of C2 principles that build upon
large-scale P2P overlays to construct more sophisticated and
feature rich applications.

IV. L ARGE SCALE PEER-TO-PEER COMMUNICATIONS

OVERLAYS

A communications overlay is the set of protocols and
algorithms necessary to build and maintain a topology of nodes
in such a way as to guarantee a set of performance parameters.
This model can then be used as a basis for communications
by applications. In the context of existing P2P technologies,
these overlay structures describe the formation of nodes into
a system of peers capable of identifying and locating remote
nodes without foreknowledge of their exact location or even
their existence. Such a consideration is necessary in many
systems where the scale of the system is large enough to
preclude the possibility of global knowledge. First generation
systems solved this problem by query broadcast, but this
solution failed to scale. Newer systems have developed more
advanced techniques for locating remote nodes, and the utility
of such systems has brought about the emergence of P2P
networking to the domain of mainstream applications.

1Livelock in a dynamic routing management system can occur when one
agent modifies a route to redirect traffic to another section of the network.
If the agent responsible for the targeted portion of the network is unaware
of the change, it may reverse the effect by redirecting traffic back through
the previous route. This process can occur very quickly withsoftware agents,
thus leading to a deadlock of live nodes.

Large-scale systems refer to those that support several hun-
dred thousand or more simultaneous nodes. Such systems are
in use today by corporations, the military, criminal elements,
research institutions, and others. Each field of applications has
differing requirements, and short of creating new technologies,
application designers must choose an existing approach (or
combination of approaches) to fulfill their requirements. This
serves as the motivation for our discussion of the current body
of research into P2P overlay technologies.

A. Peer-to-Peer Networks

This analysis examines the use of P2P networks to ac-
complish distributed C2. Systems based on hierarchical or
client/server paradigms fail immediately due to lack of scala-
bility, and are omitted from this presentation. Although much
of the related work presented here refers to P2P systems, the
protocols themselves are functional on HP2P systems.

A P2P network is one in which nodes interconnect to each
other, typically with out-degree greater than one. This means
that a node may connect to multiple other nodes. There is
no distinction between service and client nodes. Rather, nodes
are considered equal, and any of them may provide services
to the network, to include routing services. An example P2P
network is shown in Figure 1

Fig. 1. An example P2P network with eight nodes. The arrows represent a set
of transactions at a given time, but the links are consideredto be bidirectional.

A HP2P architecture, as shown in Figure 2, places additional
organizational constraints on a P2P network – it segments
nodes into clusters (groups). Each cluster is a smaller P2P
network itself, connected to the rest of the network through
one or more super peers. Super peers act as routing hubs, and
provide convenient points for additional application specific
processing. Groups of super peers can be connected to create
clusters of (super) peers, to which a subset are promoted to
higher level super peers. This layered (hierarchical) structure
can be applied repeatedly to achieve design goals [8], [9].

B. Small World

Stanley Milgram’s small-world phenomenon [11] is based
on the sociological observation that most people can be
creatively linked by a short chain of acquaintances. Early
experiments demonstrated that letters could be routed to
arbitrary destinations by traveling through the hands of kind
volunteers, with the restriction that each person along thechain



4

Fig. 2. An example two-layer HP2P network [10]. Each of the five virtual
nodes in the network is a separate P2P network, connected by two super peers
to other virtual nodes. As in a simple P2P system, each peer (cluster) is able
to connect to other peers (clusters).

was already on a first-name basis with the next individual (thus
preventing ambitious individuals from traveling cross country
to reach the destination). This result and the idea of the small-
world phenomenon was applied to computer networking by
John Kleinberg [12]. It has continued to serve as inspiration
to many P2P networking protocols, by authors’ recognition
that digital messages could be likewise transmitted between
members of a computer network without requiring extensive
network planning or global view of the network. This is a
founding principle of P2P design, and many of the approaches
here employ this idea in their designs and discussions.

V. A TAXONOMY OF COMMAND AND CONTROL

PRINCIPLES IN LARGE-SCALE MULTI -AGENT SYSTEMS

This taxonomy is adapted from the work of Cao [13] and
Dudek [14] who analyzed the characteristics of multi-robot
systems. In addition, this paper builds on the work of Lua, et.
al. [15], who provide an early survey of P2P structured and
unstructured systems. We extend their work to include more
recent developments in the field of P2P overlays with a focus
on application to large-scale C2.

Note that the characteristic of differentiation is not consid-
ered here (homogeneous versus heterogeneous systems). This
is because the systems described are used to generate and
maintain overlay networks, on top of which a given application
may reside. In particular, systems such as Pastry [16] and
Tapestry [17] have a built-in API to provide explicit support
for applications. These applications use the P2P system as
a middleware to provide replication, networking, data storage,
etc. The P2P system is independent of the application residing
on it, and therefore the system differentiation is instead a
property of the application rather than the P2P system.

A. Topology

It is necessary to distinguish between two classes of P2P
networks: structured versus unstructured. Structured P2Pnet-
works enforce a rigid set of rules on the topology and location
of nodes and perhaps data in the system. The advantage of this
design is that it provides more efficient routing. Unfortunately,
structured networks may lack resilience in networks where
nodes are transient [18]. It is possible to loosen the location
constraints – rather than enforcing absolute structure, the
system can provide ”hints” about where nodes and data are
placed.

An unstructured P2P topology is one in which node and data
locations are not enforced. Nodes are free to join the network
based on an unrestrictive set of rules. This design is usefulfor
situations where the frequency of nodes joining and leaving
the network is high. However, searching generally consistsof
flooding the network, which does not scale well. In general,
pure flooding approaches do not assign unique identifiers to
nodes. This greatly complicates attempts to provide routing
protocols in unstructured networks. These networks tend to
be more focused on content storage and retrieval rather than
providing a communications substrate for large scale systems.
Unstructured systems such as Gnutella [19], Freenet [2], and
BitTorrent2 [20], are still in use and provide a unique set
of properties useful for content distribution. However, this
study focuses on structured systems to provide solutions to
large scale multi-agent application requirements, and only
discusses the properties of unstructured systems as a means
of comparing or unique ideas.

The qualitative measures of a model’s topology are given
by one of the following three definitions:

• Strongly Structured - The topology of the network is
rigidly enforced, and is inherently inflexible. This is an
undesirable trait for a high churn network, as maintenance
actions dominate processing and bandwidth consumption.

• Structured - An approach which requires nodes in a
network to be identified and ordered in a manner that is
consistent with query protocols. This topology has weaker
requirements than a strongly structured overlay, and typ-
ically requires only that keys for nodes be uniformly
distributed across the network.

• Loosely Structured - Requires that nodes be identified
uniquely in the network, but few, if any, other constraints
are imposed. This increases flexibility for nodes joining
the network, at the expense of higher maintenance costs.

Large-scale systems are generally expected to have a high
churn rate [21]. Strongly structured systems offer the benefit
of more strictly assigned node locations, but at the expenseof
flexibility. More loosely structured solutions exploit their poly-
morphic nature to adapt to changing network conditions, but
at the expense of higher maintenance costs. Table I introduces
the overlay networks discussed in this paper, categorized by
their topological strictness.

TABLE I
STRUCTUREDOVERLAY TOPOLOGIESBY ORGANIZATION RIGIDITY

Structure Overlay Approaches

Strongly Structured Koorde
Structured Accordion, Bamboo, Butterfly, CAN, DKS,

Mercury, Pastry, P-Grid, SkipNet, Tapestry,
Viceroy

Loosely Structured Chord, Freenet, Kademlia, Kelips, One-Hop,
Symphony, Two-Hop

2Arguments persist about the true nature of BitTorrent’s topology. For the
purposes of this document, we consider BitTorrent to be a combination of
structured and unstructured ideas.



5

B. Routing Geometry

Many of the innovative ideas that separate the approaches
to P2P communications lie in the method of building routes
between nodes. The routing methods are delineated by the
geometry formed by combining the node addressing with the
routing scheme for each overlay. Many of these approaches
can then be visualized as a fundamental computer science data
structure. This is a convenient metric for describing a system’s
function, and for analyzing its performance [18], [22].

• Hypercube - A geometric structure, derived from a
square, with dimension (typically) greater than two.
These structures are used to represent planes in which
segments of a P2P network reside. For example, routing
may rely upon a Cartesian coordinate system, where
moving from source to destination can be visualized
as moving between quadrants along planes in the n-
dimensional node identifier space.

• Ring - A circular structure used to store references to
nodes in neighbor or routing tables. Finding the next hop
in the route usually involves finding the nearest identifier
in the ring using a similarity measure (such as modulo
arithmetic). References around the ring generally divide
the identifier space evenly to provide best ”guesses” about
which direction to choose.

• Skip List - Arrays of linked lists that point to nodes in the
network node identifier space based on level. The nearest
level nodes are close in the identifier space, whereas
higher (or semantically lower) level nodes point further
into the identifier space. Choosing a level for the next
jump generally depends on the distance to the destination
identifier.

• Butterfly - A network of logN stages, whereN is the
number of nodes in the network, and nodes at stagei
interpret theith bit of the routing address to choose
the routing node in the next stage. This differs from a
standard search tree in that nodes each have two inbound
and two outbound links, and a butterfly network generally
does not have a single root node.

• Linear - Neighbors and next hop routing nodes are stored
in a linear structure, such as an array.

• Tree - Refers to a standard tree data structure. The
branching factor or node outdegree (logarithmic base) is
specified where appropriate.

• Adaptive Linear - An improvement on flat linear routing
introduced by Freenet [2] in which key nearness is used
as an initial attempt to locate content. Upon successful
queries, the involved nodes record the key and destination
node information about the query for later transactions.

• de Bruijn Graph - A directed graph whose nodes are
addressed by ordered proper prefix. The graph hasbm

vertices, whereb is the address base, andm is the width
of the address.

C. Query Path Length

A critical feature of all overlay protocols is the expected
number of hops to route a message from source to destination.
Basic analysis shows that most overlay structures achieve

O(logN ) optimal path length, whereN is the total number
of nodes in the system. When considering different overlay
strategies, it is important to examine this measure in the
context of the other features an overlay provides. For example,
Kademlia supportsO(logN ) path length, but does so even
in environments with high rates of hardware and software
failures, or those with high churn rate. The One-Hop protocol
supportsO(1) path lengths, but at the expense of maintaining
O(N ) neighbors. A low path length is desirable for per-
formance reasons, but achieving high performance typically
incurs a compromise in one or more other features [38].

D. Node Memory

A primary tradeoff space in large scale P2P systems is the
compromise between query path length and the amount of
memory used at each node. These two attributes are generally
inversely proportional, and the methods of compromise, and
their applications, form a primary differentiating factorfor the
techniques discussed in this paper.

Note that Table II includes ranges for the query path length
and node memory for several overlays. This indicates that the
approach either has several different techniques to choosefrom
based on design considerations, or autonomously varies its
strategy based on runtime parameters.

E. Node Addressing

Addressing refers to the assignment of an identifier to each
node in a system. In most systems, the address of each node
is unique. However, some systems assign nodes randomly,
whereas others use a distributed algorithm to ensure unique-
ness and other properties. The addressing directly supports
the algorithms used to locate nodes in the network. Note that
most systems use a form of hashed addressing for identifying
content [39], and this subject it outside of the scope of our
discussion. For that reason, we consider only requirementsfor
node addressing here.

• Consistent Hashing - Creates unique addresses based
on the hash value of one or more properties of the node.
These properties generally include host name or IP ad-
dress, as well as a salt. This is a distributed algorithm that
all nodes in the system follow to generate addresses that
ensure some global property, such as uniform distribution
of addresses.

• Uniformly Distributed - The property of node identi-
fiers being distributed across the network according to a
uniform random distribution. Routing algorithms use this
property to ensure that each node’s routing table has a di-
verse sampling of the identifier subspaces that exist in the
overall identifier space, which is useful for choosing the
next hop in a route without full knowledge of the network.
Uniform distribution is a property, whereas consistent
hashing is a mechanism to ensure that property. Systems
that identify consistent hashing as part of the protocol are
considered to have stronger semantics, although requiring
only uniform distribution of identifiers is more flexible (it
permits the use of different algorithms).



6

TABLE II
LARGE-SCALE P2P MULTI -AGENT SYSTEM STRUCTUREDOVERLAY CHARACTERISTICS

Name Routing Geometry Query Path Length Node Memory Addressing Scalability Bandwidth

Accordion [23] Ring O(1) - O(logN ) O(1) - O(logN ) Consistent Hashing High Low
Bamboo [24] Ring O(logN ) O(logN ) Uniformly Distributed High Low
Butterfly [25] Butterfly O(logN ) O(log2N ) Uniformly Distributed High Low

CAN [26] Hypercube O(d d
√

N ) O(2d) Cartesian Zones High Moderate
Chord [27] Ring O(logN ) O(logN ) Consistent Hashing High Low
DKS [28] Tree O(log

k
N ) O(logN ) Unique Low Low

Kademlia [29] Tree O(logN ) O((2b
− 1)log

2bN ) Uniformly Distributed High Low
Kelips [30] Linear O(1) O(

√

N ) Consistent Hashing Moderate Moderate
Koorde [31] de Bruijn O(logN /loglogN ) - O(logN ) O(1) - O(logN ) Consistent Hashing Low High
Mercury [32] Ring O(log2N/k) O(logN ) Uniform Random Sampling Moderate Moderate
One-Hop [33] Linear O(1) O(N ) Unique Low High
P-Grid [34] Tree O(logN ) O(logD) Uniformly Distributed Moderate Moderate
Pastry [16] Ring O(logN ) O(logN ) Uniformly Distributed High Low

SkipNet [35] Skip List O(logN ) O(logN ) Skip Lists Moderate High
Symphony [36] Ring O( 1

k
log2N ) O(2k + 2) Uniformly Distributed High Low

Tapestry [17] Ring O(logN ) O(logN ) Uniformly Distributed High Low
Two-Hop [33] Linear O(1) O(N/k) Unique Moderate Moderate
Viceroy [37] Ring & Butterfly O(logN ) O(logN ) Consistent Hashing High Low

• Pseudo-Random/Signature - Node identifiers are
pseudo-random, each generated using an independent
random number generator. This salt is combined with
other elements of the node’s properties to generate a
(hopefully) unique identifier for that node.

• Cartesian Zones- Nodes are identified by Cartesian co-
ordinates, and separated into zones in a multi-dimensional
Cartesian coordinate space. Routing generally takes place
by identifying the source and destination coordinates, and
routing from zone to zone along a line connecting the two
end points.

• Ordered Proper Prefix - A method of addressing used
to support deterministic routing of messages. Each node
is assigned a unique identifier within a fixed width space.
The nodes are connected to each other in such as way that
moving from node to node follows an ordered prefix of
the final destination node’s identifier. This is similar to
how search is conducted in a trie [40].

• Skip List - An approach that divides nodes into routing
zones based on the levels used in skip lists. Each node
is uniquely identified, and stored in one or more skip
lists. Level jumps in the skip lists differentiate identifier
subspaces, and are used to expedite routing queries.

• Unique - A loose constraint, requiring only that nodes in
a system are identified uniquely.

F. Scalability

Large-scale systems are those that may reach or exceed
several hundred thousand to a million nodes. This size re-
quirement inflicts a toll on both the topology design as well
as C2 techniques used to interface with the agents. It may
be reasonable to employ a supervised cooperation design
at the level of a single cluster in a HP2P network, where
the super peer is responsible for coordinating its cluster’s
agents. However, a more resilient and scalable solution would
be necessary to support the C2 of the cluster super peers
themselves. Therefore, we generally desire a decentralized
command approach over a supervised strategy.

Isoefficiency [41] is defined as the rate at which the problem
size must increase with respect to the number of processing
elements to keep the efficiency fixed. Here, we will use the
term scalability to refer to an adaptation of isoefficiency:the
rate at which efficiency decreases as the size of the network
increases. For the purposes of C2, the efficiency of node
discovery and single and group messaging is considered. In
addition, the amount of memory storage per node is included
in this analysis. Most systems discussed use an amount of
memory per node that is logarithmic in the number of nodes
in the system. We explicitly describe cases where memory
usage is unique or otherwise differs notably from comparable
norms.

Scalability is qualitatively described here as High, Medium,
and Low, where High scalability refers to systems that are
most resilient to increases in size. As a goal of this paper,
we desire highly scalable architectures upon which application
level solutions can be developed.

• Highly Scalable - The amount of work necessary to
manage and use the system increases linearly (or better)
with the size of the system.

• Moderately Scalable- Work required to use and manage
the system increases in a small but non-linear fashion
(with a positive acceleration) with respect to the size
of the system. These approaches support systems up to
a point, but fail on medium sized networks (tens of
thousands of nodes, for example).

• Poorly Scalable - The system fails to function beyond
tens or hundreds of nodes. This failure can manifest itself
as lost packets, misunderstood communications as a result
of high latency, or failure of one or more nodes due to
large amounts of bandwidth or number of connections
imposed upon them.

G. Bandwidth Consumption

The amount of bandwidth available to a multi-agent system
is generally far greater than for a system of robots, but the
use of that bandwidth can still incur a cost to the functioning



7

of the system and its missions. C2 strategies must therefore
be careful to ensure no unnecessary bandwidth is consumed,
as it can have a significant impact in a large-scale system.
Many of the P2P strategies considered here sacrifice bandwidth
consumption to achieve better message routing constraints
(and some vice versa). Bandwidth will be described as High,
Medium, and Low, with High bandwidth systems requiring
the most bandwidth for search or maintenance activities. Low
bandwidth systems are most desirable, but must be considered
alongside search efficiency.

This metric is, in general, related to scalability. However,
while it is true that scalable solutions tend to have low band-
width consumption for maintenance functions, it is not nec-
essarily true that poorly scalable solutions use large amounts
of bandwidth. The distinction lies primarily in the topology
organization. Therefore, we present this metric to help distin-
guish the reasons for scalability, and as an additional means
for evaluating scalable solutions. We prefer low bandwidth
consumption, even though it may need to be compromised
to gain stronger guarantees on routing complexity. It may
therefore be necessary to accept a medium bandwidth system,
although very rarely will a high bandwidth system be justified
for a large scale system.

• High - The system uses large amounts of bandwidth to
maintain and organize its structure.

• Medium - A qualitatively modest amount of bandwidth
is necessary to operate the network routing and support
structures.

• Low - Given the properties of the system, little bandwidth
is used to maintain its structure.

H. Reconfigurability

Deployed P2P networks tend to have a high churn rate [42],
where agents may join and part unexpectedly, and with high
frequency. A high churn rate is a result of events such as users
turning off their machines unexpectedly, unreliable communi-
cations links, etc. Large-scale C2 systems must therefore be
resilient to the loss of productive agents and must be able to
restructure task allocations to ensure mission progress.

As relates to distributed C2, the group architecture, whatever
its form, must support efficient search and broadcast. This
is most commonly observed in agent systems organized into
structured or loosely structured topologies. Reconfigurability
directly affects, and is affected by, the properties necessary to
maintain a system’s routing and search complexities. This in
turn affects the level of bandwidth consumption for mainte-
nance activities. Reconfigurability is also, in general, directly
related to bandwidth consumption and strictness of topology.
As it impacts and is affected by many other properties, and
is a derived metric, reconfigurability is omitted from TableII,
and instead is discussed inline, where appropriate.

VI. PEER-TO-PEER COMMUNICATIONS CHARACTERISTICS

The following sections discuss the available structured P2P
and HP2P overlay protocols currently available. The emphasis
is on distinguishing the unique approaches of the above design

taxonomy, and how they impact the properties of a large-
scale P2P system. The discussion is structured in parallel to
the stages of P2P evolution presented above, beginning with
an introduction to message broadcast in unstructured large-
scale P2P systems. Although the focus of this discussion is
the technology behind structured P2P systems, it is instructive
to first briefly introduce the founding ideas and techniques
used to build the first popular unstructured P2P systems. In
particular, many of the problems found in early systems are
cleverly solved in the design phase of subsequent systems, and
many of the early solutions are retained and applied to similar
problems in later systems.

VII. U NSTRUCTUREDPEER-TO-PEER SYSTEMS

A defining feature of the first generation of large-scale P2P
networks is the method of broadcast. Systems such as Gnutella
[1] use a full (one-to-all) broadcast at each step of a message
query, whereas nodes in a Freenet [2] network select only a
subset of neighbors to which to send message queries. One
result of the research efforts for the first generation of P2P
systems is the need for efficient and duplicate free broadcast.
A primary difficulty is that P2P networks can become large
enough that maintaining a global view of the network becomes
impossible due to limited system resources. Nodes in these
networks may have little or no information about the roles or
locations of other nodes in the network, yet they may still need
to communicate. It is therefore necessary to develop routing
protocols for large-scale P2P networks that permit one-to-one
and one-to-many communications.

Perhaps the most obvious approach to message broadcast
for P2P networks is the flood-fill algorithm. Message flooding
involves a node sending a query to all of its neighbors, who
in turn send to all of their neighbors, repeating until all
nodes have (hopefully) been queried. This system is inefficient,
creating many duplicate messages, requiring a duplicationratio
of about 80% to achieve a 90% success rate [43]. Still, some
systems such as Gnutella [44], [45] have gained popularity
even while using this approach.

An improvement to the basic flooding protocol is the Mod-
ified Breadth First Search (MBFS) [46], a gossip algorithm
[47]. This is a slight improvement over blind flooding, and
uses a probabilistic approach. When a node receives a query,
rather than forwarding it to all of its neighbors (assuming it
does not have the information locally), it sends the message
only to a randomly chosen portion of its neighbors. While
this reduces total network traffic for a given search, it is still
probabilistic and provides no guarantees that all nodes will be
visited, or of duplication constraints. A slight improvement to
the MBFS is the Random Walk [48]. This approach chooses
at mostK neighbors at each hop, but incorporates a Time To
Live (TTL) parameter. This introduces the constraint that at
mostK ∗ TTL messages will be sent to the system, but does
not guarantee that a message will reach all nodes.

A further refinement of the flooding approach is called
Efa [49]. In this approach, each node maintains information
about its neighbors up to several (two) hops away. The
algorithm then employs several set operations to determine



8

possible overlapping lines of communication that might occur
in a broadcast to any of its neighbors. While this approach
achieves improvement over the standard message broadcast,
the core of its design relies upon a heuristic decision engine
that ”anticipates” the actions of other nodes, without actually
establishing a coordination agreement ahead of time. In this
respect, the algorithm must guess if another node will send a
message forward, and that other node is likewise anticipating
about the first node. There exists no determinism or guarantee
of delivery to all nodes.

CAP [50] takes a step toward solving this broadcast problem
by incorporating several structural rules, and extends the
Gnutella protocol to incorporate locality sensitive clustering.
The idea is that nodes that share lower common latency are to
be matched and organized into clusters, so as to minimize
overall search times. The organization is performed by a
centralized cluster server that is responsible for matching
nodes to clusters, extending the idea of early Napster [51]
implementations. In creating clusters, the authors assignaddi-
tional responsibilities to certain nodes in each cluster, calling
them delegate nodes. These delegate nodes are later named
super peers or super nodes, and appear in the popular file
sharing system KaZaa [52].

SCAMP [53] incorporates a membership service into un-
structured P2P systems. It provides nodes with a partial view
of the network using a probabilistic subscription protocol.
Broadcast is handled by each node forwarding a message to
log N + c of its neighbors, whereN is the number of nodes
in the network, andc is a small constant. This establishes a
high probability (-e−c) of all nodes in the system receiving
the message.

BAR [54] extends the gossip based broadcast mechanism to
include a deterministic routing function. Instead of usingprob-
abilistic neighbor selection in message forwarding, BAR uses
a pseudo-random number generator combined with unique
signatures to choose neighbors. This scheme also provides
rudimentary security through Public Key Infrastructure (PKI)
encryption.

Freenet [2] acts as an anonymous distributed file system
by sharing the persistent storage mechanisms of its users’
machines. It is a hybrid approach in that it uses flooding
to locate data items, however it does optimize searches by
replicating popular data along frequently searched paths.Thus,
Freenet could be considered either unstructured or content
structured.

In the Freenet protocol, each file is given multiple hashed
keys, used to locate and asymmetrically encrypt the file. This
encryption is the source of Freenet’s anonymity: due to the
difficulty of examining the raw data, each user in the system
can maintain plausible deniability about the documents being
stored locally. Freenet makes extensive use of caching. When
a file is retrieved from a remote node, a copy of that file
is then stored on the local machine, as well as at the nodes
along the route between the source and destination nodes.
This replication then improves the performance of queries for
commonly sought files. It will also remove all files that the
network considers uninteresting due to attrition: storageareas
become filled, and least recently used data is purged.

Search is conducted based on the hash values of content
and description strings, and follows semantics similar to
Transmission Control Protocol (TCP). Each search request is
sent to the neighbor node with nearest key, specifying TTL and
a (pseudo) unique identifer for the message. If the message is
found before the TTL expires, then the file is returned, and
the source node’s routing table is updated with the destination
node’s information. This is another method in which Freenet
adapts itself to the changing landscape of the identifier space:
high quality neighbors are remembered for later transactions.
In addition, nodes do not have a specific addressing scheme.
Instead, nodes are known for the content they provide.

The hybrid approach of BitTorrent [20], [32] incorporates
security and fairness into its file sharing protocol. BitTorrent
adopts some elements of Napster’s sharing model: it builds a
separate unstructured P2P network for each data item being
shared, but stores information about which nodes are partici-
pating in that torrent network in one or more repositories. This
reduces the total size of its networks, resulting in improved
performance. Unlike Napster, BitTorrent tracker files, which
record information about a particular sharing network, canbe
posted anywhere (such as on websites), and do not require
a single centralized server. In addition, BitTorrent provides
remarkable robustness. Earlier file sharing protocols suffered
from data integrity issues: a malicious user could announce
its possession of a particular file, and instead provide poorly
formed blocks of data in its place. Through the replication of
data across a P2P file sharing network, this would eventually
contaminate a high percentage of downloads of that file.
BitTorrent addresses this problem by assigning checksums to
each block and the file as a whole, allowing peers to identify
poorly formed blocks.

VIII. C ONTENT STRUCTURED INFORMATION STORAGE

SYSTEMS

The second generation of P2P systems is built around the
ability to store a library of information across a network.
This data set consists of elements that are identifiable by a
unique key. Search in such systems is concerned with locating
a particular data element given a query which consists of the
key itself, or in resolving one or more ”clues” (range queries,
subject area, etc) to a small set of data. Unlike previous P2P
systems, which relied upon searches for files by filename or
perhaps a short subject description, content retrieval systems
rely on more sophisticated data representation models. These
models are most often adapted from database theory, and are
outside the scope of this paper.

These approaches use both flat and hierarchical P2P systems
as a means to store information. A key, although subtle,
distinction between these systems and those in the next section
is that content structured systems modify network structure to
organize the content stored by nodes, whereas communications
structured systems do not impose constraints on the data stored
by nodes, but rather emphasize the efficiency of locating nodes
in the network. More generally, content overlays search for
content, whereas communications overlays search for nodes.

An early use of P2P systems is to represent digital libraries,
and to build search mechanisms for locating content in these



9

systems. An inherent problem in such systems is the differing
semantics and organizational structures used to representand
index the heterogeneous data sets stored in large digital
libraries [55]. To this end, many techniques borrowed from
database theory are applied to distributed systems. In partic-
ular, content similarity, data representation, resource ranking
and selection, and query semantics are discussed thoroughly
in this body of research [56]. Lu and Callan [57], [58] explore
this topic very well, and use their acquired knowledge to
develop robust and sophisticated content search networks for
large-scale federated search in P2P systems. Their effortsare
formally based on language models and data representation,
and provide insight into the different methods for storing data
of various classifications.

Zhang et al. [59] observe that the uninformative search
strategies of unstructured P2P systems perform poorly for
even simple queries. To this end, they introduce a topology
reorganization that attempts to group context-similar data
elements. They later extend this idea to include a multi-
level hierarchical structure that groups agents into levels,
and again by groups, by content similarity. Their search
algorithms improve greatly on basic flooding approaches by
assuming a cooperative system. In such an environment, agents
cooperate to forward search queries intelligently based on
content organization rules. Much in the way a HP2P system
operates, they introduce the ideas of super nodes and peer
nodes (group mediators and group processors, respectively),
with super peers absorbing much of the decision making
and management functions, while peer nodes are primarily
concerned with responding to query requests [60], [61].

P-Grid [34], [62] (Peer-Grid) is a hybrid content storage
and retrieval overlay that uses a virtual balanced tree (trie)
to maintain a searchable structure of data items identified by
unique keys. The tree structure itself is logical rather than
physical, where nodes record locations of data items stored
on other nodes, but do not form a physical topology in the
shape of a tree. Each node is responsible for a subset of the
data stored in the network, indexed by a specific data key
prefix. The key space is segmented and reordered according
to a self-organizing algorithm with the objective of achieving
runtime search load balancing. The path to a key follows a trie
search algorithm, where a jump from node to node proceeds
along the bits of the key being searched, moving downward in
the tree shown in Figure 3. Nodes at each level in the virtual
tree store the location of a node corresponding to data keys
that are in different segments of the key space for that level.
Storage per node isO(log D), whereD is the number of data
items in the tree, and expected query length isO(log N ).

Rather than developing a single solution to the represen-
tation, organization, and search for a heterogeneous data set,
Bao et el. [63] capitalize on the diversity of data sets and
available federated search techniques to build the Hetero-
geneous Search (HES) system. The HES technique is built
upon the idea that the data stored in large-scale P2P systems

Fig. 3. An example P-Grid tree structure [34]. This tree holds eight data
items, shown in the bottom level. Searches begin from the toplevel, and
progress downward, with one bit resolved at each level. Backward and cross-
level links are maintained to reduce search time for locating distant (key-wise)
data items.

is semantically random3. HES incorporates multiple content
storage and retrieval algorithms into a single agent structure,
and uses a probabilistic, rather than deterministic, algorithm to
choose a search technique to satisfy inbound search requests.
The exact probabilistic module selector algorithm is itself
interchangeable, and hinges upon either a learning algorithm
or database language analysis of incoming queries to optimize
runtime algorithm selection.

IX. COMMUNICATIONS STRUCTUREDPEER-TO-PEER

SYSTEMS

Evolving out of the content retrieval systems is the more
generic ability to locate nodes by key, rather than the data
they store. This initial leap was a small one, although modern
systems have proven to be quite sophisticated in regards to
network organization and searching. In addition, the organi-
zational constraints necessary to ensure reliable performance
results also provide the opportunity to introduce improvedfea-
ture sets. Many such systems incorporate one-to-one discovery
and message routing, and some also provide direct support for
maintenance, fault tolerance, and security.

This section introduces the structured overlay protocols,
intended to be instructive and representative of the concepts
available in the current body of research. This discussion
includes both pure P2P systems, as well as HP2P systems that
are developing more recently, offering many of the same ad-
vantages, in addition to an improved feature set. The results of
this analysis are summarized in Table II. This table organizes
the below P2P strategies based on our taxonomy of large-scale
multi-agent systems. The HP2P strategies are not included in
this table because many of them are in early development, and
thus lacking in formal rigor. Performance evaluations for these
systems are included inline, where available.

3Note: It may not be the case that the dataset itself is semantically random.
Instead, the probability of existence of a data item in a network, the probability
of a search query from a source reaching the node that stores the desired data
item, and the differing semantics used to store and query items may cause
searches to appear as probabilistic to an outside observer.



10

X. FLAT PEER-TO-PEER COMMUNICATIONS SYSTEMS

This section describes those communications structured P2P
systems that provide a unique advantage or design technique
over other approaches. Most commonly these differences in
overlay strategies are a result of fundamental design differ-
ences, such as routing geometry, but also include performance
variations, such as expected hop-length for node location
queries under certain conditions. Two of the most cited and
extended approaches are Chord and Pastry, and we provide a
separate discussion of each of these seminal approaches and
their offspring.

A. Chord

The Chord protocol [27], [64] uses consistent hashing [39]
to locate nodes in a loosely structured P2P network. Consistent
hashing in Chord uses a standard hashing technique (such
as SHA-1 [65]) to create two hash values for a node. The
node’s identifier is the hash image of the node’s location (IP
address, port number, etc). The key identifier is produced by
hashing a key that describes the node, such as the subject of
the documents it stores or the node’s task information.

The identifiers are ordered in a circle of size modulo2m,
wherem is the length of the hashed identifiers, in bits. A keyk
is inserted into this ring by finding the first node that matches
the key, or the node that directly follows it in the idenfitifier
space. (This process is essentially a hash table with collision
detection [8].) This node is called the successor ofk, and
denotedsuccessor(k). To insert a key into a ring of nodes,
the keyk is assigned to the node at positionk mod 2m. If
there is no node at that position, the key is inserted at the first
successor node ofk.

As an example, consider the Chord ring shown in Figure
4. This figure shows three nodes in a ring withm = 3. This
yields a ring of size23 = 8, with nodes numbered on the set
[0,2m - 1] = [0,7]. Nodes are currently present at positions 0,
1, 3. An element with keyk = 1 is stored at node1 mod 23

= 1. However, when inserting keyk = 2, a node is not found
at position2 mod 23 = 2. For k = 2, the first successor node
of position 2, which is node 3, is assigned as the successor of
this new node at 2. Inserting keyk = 6 again hits a location
with no node, and the first successor node in the ring is at
position 0.

Fig. 4. An example Chord ring with three nodes: 0, 1, 3 [27].

Using the Chord consistent hashing protocol, it can be
proved that no node will store more thanO(logN ) keys in
a steady state system [27].

Chord nodes also store a routing table describing the nodes
they know about in terms of successors of keys they have seen.
The finger table at a noden contains at mostm entries, and the
ith entry contains the identity,s, of the first node that succeeds
n by at least2i−1. The nodes is called theith finger of node
n. The finger tables are used to lookup keys in the network by
querying nodes known to store keys close to the desired key.
The number of nodes in a steady state system to be examined
is, with high probability, constrained byO(logN ) [27].

The restriction that these relationships hold under steady
state is a product of the population and stability of the
finger and identifier tables at nodes in a network. In a steady
state network, the nodes have suitable knowledge about their
neighbors within a given range (a few hops typically) to
successfully route messages according to the logarithmic time
predictions. However, in a network with a high frequency of
transient nodes, the message queries may take longer, although
they are still predicted to succeed. In addition, the structure
of the finger tables can be exploited to provide duplicate-free
broadcast.

An extension to the Chord protocol is called Recursive
Partitioning Search (RPS) [43]. The purpose of this protocol
is to extend Chord by improving the performance of lookup
delays in duplicate-free broadcasts. That is, a Chord network
performsO(N ) calculations in finding successor nodes for
broadcast routing. However, RPS improves this processing
time to O(logN ). It operates by partitioning nodes into
overlapping regions. Nodes performing search, to include
broadcasts, are permitted to query only nodes within their own
regions. In addition, the size of the permissible search region
is reduced at each hop. When a message is sent to a following
region, a tag is included which specifies a seed that is used
to describe the allowable search regions. A simple algorithm
is applied to the tag which guarantees the uniqueness of the
next region to visit. In this way, under the Chord steady state
constraints, a duplicate-free broadcast is achieved. However,
the key space must be uniformly distributed across the network
for the algorithm to function correctly.

The RPS and HP2P both organize the network of nodes
into different segments. These zones may be organized based
on application or locality. HP2P networks also incorporatethe
idea of a super peer, which is responsible for gateway activities
for each cluster (zone). In this way, RPS implicitly addresses
some of the necessary search and routing considerations found
in a HP2P.

Another extension to Chord is Accordion [23]. Accordion
incorporates a variable routing table size. Based on a tunable
bandwidth limitation parameter, the protocol maintains routing
information about a set of nodes whose cardinality is inversely
proportional to the distance from the reference node. That is,
it will store information about more nodes that are closer than
farther away, with distance determined by the bandwidth tun-
ing parameter. This allows system designers and maintainers,
or the nodes themselves, to modify the tuning parameter to
store more or less information about the network in each node



11

as the system progresses. In addition to varying the amount of
memory used to store routing tables, this approach also adapts
to changing network traffic conditions. Based on bandwidth
utilization, nodes may self-tune themselves to reduce the
size of routing table, which also reduces the bandwidth used
to perform table maintenance. Accordion will also perform
parallel routing lookups [66] to reduce average lookup times,
while still staying under the bandwidth limitation.

Fig. 5. An example de Bruijn graph forn = 2 bits,m = 3, with 2
3 possible

symbols [67]. Each node has exactlyn incoming andn outgoing edges.

A variation of Chord, called Koorde [31], uses a de Bruijn
graph to represent a DHT. A de Bruijn graph of basen values
and m bits of resolution will have a node identified by each
possible combination of thenm bits. For example, Figure 5
shows the de Bruijn graph whenn = 2 (base 2) andm = 3.
The graph has23 total nodes, each with two incoming and
two outgoing edges. The outbound edges of this graph point
at the two nodes whose identifiers are obtained by performing
two left shifts of the bits identifying the source node: once
shifting in a one, and once shifting in a zero. Koorde exploits
this ordered connectivity to reduce the state of each node in
a network. It is possible in such a graph to, given a keyk,
deterministically find the proper route to the destination by
following the sequence afforded by the de Bruijn properties.
Aside from the smaller routing tables, the rest of the protocol
follows Chord. However, this approach requires a highly
ordered and rigorously maintained organization, which has
high maintenance cost. By maintenance alone this approach
does not scale. In addition, the maximum size of the network
must be pre-determined so the key space can be configured.

The One-Hop routing scheme [33] uses the Chord protocol
as a foundation to support messages from source to destination
to travel only one hop, in a steady state system. Each node in
the system maintains location knowledge of each other node
in the system. The routing tables are stored as in Chord. The
challenge of this approach is network churn: nodes joining
and leaving the network require updates. The structure itself is
resilient as per Chord, however both cases require a broadcast
to occur. This broadcast uses the assumption that all keys
are uniformly distributed across the nodes of the network.
The overlay structure is then divided into a set ofk zones.
Since there is a uniform distribution of keys, these zones will
be probabilistically equal in size. The node at the mid-point
of each key zone is forwarded a message about the new (or
past) node, and that message is distributed as in a balanced
tree, splitting the distance in each sub-zone at each hop. This

approach yields efficient broadcast, however is not scalable
due to bandwidth consumption.

The Two-Hop scheme builds upon the One-Hop scheme,
but relies more on zone leaders. For each of thek zones,
a (slice) leader is chosen. Each zone is then partitioned into
units, again evenly partitioned across the sub-key space. Every
slice leader submits the information for a unit of its nodes to
another slice leader. That other slice leader then disseminates
the unit’s information to its entire slice. In this way, eachnode
has routing information about a unit from each other slice. In
order to send a message, the source node need only locate
the node with closest key in the remote unit, and forward
that message. In the worst case, the message will make a
second hop once in the remote unit. This amount of cross-
information may be undesirable for secure applications, and
the assumption of randomly distributed keys may be unrealistic
for the CyberCraft some networks. However, the authors did
recognize the need to have ”super peers” to facilitate the
bandwidth requirements for this scheme, which is one step
toward a HP2P configuration.

B. Pastry

Pastry [16] is a self-organized overlay network, intended
to support applications. Machines with one of these applica-
tions also hosts a Pastry node, which is part of the Pastry
network. Pastry provides a large-scale communications API
for applications to use. Each node in a Pastry network has a
nodeId. Requests are routed to the node that is numerically
closest to the desired key, withO(logN ) expected hop counts,
whereN is the number of nodes in the Pastry network. The
nodeId space is distributed randomly, as each new node is
given a randomnodeId. As a result, with high probability,
Pastry nodes with similarnodeId’s are distributed uniformly
throughout the network. Each node maintains a list of the
k nearest nodes, bynodeId. Using this, applications can
replicate information or processing across thesek nodes,
which provides fault tolerance to failures because the nodes
are distributed. Pastry also incorporates a small number of
long-haul links for each node. These links are built according
to a proximity heuristic which attempts to minimize network
diameter [68]. Message routing in Pastry is very similar to
the Chord protocol. Both systems maintain a ring of adjacent
nodes, with logarithmic (base 2) addressing.

Bamboo [24] extends Pastry to address three key perfor-
mance issues: reactive versus periodic recovery from failures,
calculation of message timeouts during lookups, and choice
of nearby over distant neighbors. Each of these attributes is
given tunable features in Bamboo. Reactive recovery refers
to the reaction of a node when it determines that one of
its neighbors has failed. In this case, the node broadcasts its
updated routing and neighbor sets to all of itsk - 1 neighbors.
The problem occurs when either (a) all nodes detect the failure
at the same time and forward their full tables to each other
(anO(k2) event), or (b) the keep alive messages were delayed
due congestion, and the node didn’t fail at all. Case (b) can
further congest and even overload the network, thus causing
additional nodes to appear to have failed. The authors call this



12

a positive feedback cycle. The alternative to reactive recovery
is periodic recovery. This approach is more patient, and relies
upon periodic updates of differences to a node’s table to be
sent to its neighbors. Loss or acquisition of a neighbor doesn’t
change the operation of this approach, and it is thus less prone
to congestion and is more resilient. However, it is also slower
to notify the system of the change, which can delay updates of
routing tables, thus resulting in a higher message query failure
rate.

Bamboo supports two types of timeout calculations: TCP-
style and virtual coordinates. In the TCP-style timeout calcula-
tion scheme, each nodes maintains an exponentially weighted
mean and variance of response time for each neighbor. This
allows nodes to have a rough idea of expected base timeouts
for issuing searches to different portions of the network.
The alternative scheme relies upon virtual coordinates. Virtual
coordinate timeouts use machine learning to assign to each
node a coordinate in a virtual metric space such that the latency
between two nodes is represented as a line between them in the
virtual coordinate space. Bamboo uses the virtual coordinate
system found in Chord, called Vivaldi [69]. Vivaldi maintains
an exponentially weighted average of past round trip times
between nodes, and uses that to create reasonable timeout
values.

Bamboo’s final improvement over Pastry is to incorporate a
smarter table population scheme. In global sampling, a node
fills a slot with prefix p in its neighbor table by using the
search capabilities of the DHT to its advantage. It performs
a search for a random key with prefixp, and recording the
first result. In a steady state system, repeated sampling will
result in high quality neighbors. For local tuning [24], a source
node contacts another node in its routing table at levell,
and asks it for its levell neighbors. The idea is that some
of these nodes may have lower latency than some of the
source node’s existing neighbors, and will have a similar
search key prefix. The results are compared, and the source
node’s tables are updated if any closer nodes are found. The
neighbors’ inverse neighbors protocol samples those nodes
who have the same neighbors as the source node. For example,
two nodes may reside on the same network segment and be
initially isolated from the rest of the network and unaware
of each other. However, they may have the same neighbor
in common. Querying that neighbor for its neighbors will
help the two near nodes to discover each other. The final
technique introduced into Bamboo is similar to Tapestry’s
nearest neighbor algorithm, and roughly combines the previous
approaches. It begins with sampling the neighbors of nodes at
level l. Then only thek nearest (lowest latency) nodes are kept
from that set. The levell is decremented by one, and another
sample is performed on the remainingk nodes. This process
continues untill < 0, with consideration paid at each step to
possible new neighbors.

Incorporating attributes from both Pastry and Chord,
Kademlia [29], [70] seeks to improve routing efficiency and
knowledge sharing. It uses the symmetric properties of bitwise
XOR operations to determine the distance to a target node.
Kademlia stores information about other nodes ink-buckets,
where k is the number of bits of address resolution. Each

bucket may store multiple pointers to nodes, and all of the
entries in a given bucket are examined when choosing a
query’s next hop. With a separate bucket for each bit of
address resolution, the XOR distance between source and
destination nodes is compared bit by bit with the bucket list
indices. Progressing in this linear fashion effectively reduces
the number of node segments under consideration by half at
each step. Each bucket contains multiple entries, increasing
the breadth of nodes under consideration for each network
segment and increasing search accuracy and fault tolerance.
Messages also store additional meta information, and interme-
diate nodes along a route peek at that information to maintain
more consistent routing tables.

Tapestry [17] provides an API similar to Pastry, but stores
its routing tables differently. A node’s neighbors are stored by
prefix, and a prefix search is conducted similar to how a trie
operates [40]. Like Pastry and Chord, the message is forwarded
to the node with the closest identifier after conducting a local
search. The underlying assumption that makes it unsuitable
for a HP2P is that nodes are free to connect anywhere in
the network they choose. Doing so permits them to maintain
routing tables that index prefixes that may be part of distant
clusters. Although this provides reasonable search complexity,
the information separation aspect of a HP2P is lost.

C. Other Design Paradigms

Viceroy [37] addresses two specific challenges found in
large scale P2P distributed storage and search systems: the
distribution of data to provide predictable performance bounds,
and the maintenance of routing table in a high churn net-
work. Viceroy’s routing tables operate similarly to the Chord
protocol, except that the outdegree for any node is constant.
This constant outdegree is meant to aid in the maintenance of
routing tables, which the authors believe is a more common
(and higher priority) activity than searches in a high churn
network. It is built on a butterfly topology, where nodes
maintain links to other nodes at varying distance and level,
so as to provide expected performance bounds. Forward and
backward links facilitate routing table maintenance for nodes
that join or leave the network.

Mercury [32] is a multi-attribute search DHT. Its routing
protocols are derived from Chord. It introduces the idea of at-
tribute hubs, which are solely responsible for a single attribute
(although one physical hub may support multiple logical hubs).
Mercury supports multi-attribute searches by dividing thekey
space into zones organized by primary attribute. Hubs are
arranged in a ring according to contiguous values of attributes.
This reduces the difficulty in search to simply finding a hub
which stores the attribute. From there, the hub forwards the
query to all of its leaf nodes which might match the remaining
portions of the multi-attribute search. In this way, Mercury is
a hybrid system, closer to a distributed P2P relational database
than a DHT. This approach could be well suited for running
in a HP2P architecture, since the idea of hubs in a P2P system
lends itself to the thoughts of super peers HP2P architecture.
Mercury is able to achieveO(log2N/k) hops for lookups,
wherek is the number of neighbors per node.



13

Content Addressable Network (CAN) [26] is a design for
peer-to-peer indexing based on the idea of a DHT. The
hashtable space is divided amongst theN CAN nodes using
a deterministic hashing function, formingN zones based on
a d dimensional Cartesian coordinate system. A query for a
key K is hashed, and the locationP determined by the value
of that hash function refers to the zone in whichK resides,
if it exists. To facilitate nearness between adjacent zonesin
the search space, nodes dynamically reconfigure themselves
to be connected to their zone neighbors. Routing is performed
by moving messages to their destination zones. In terms of
a Cartesian coordinate system, a line between source and
destination is formed, and the message travels along that line
by moving from zone to zone. Inserting a new node into
a CAN network requires splitting an existing zone, but not
modifying the original size of the space. Increasing the size
of the space, and maintaining routing tables, is moderately
expensive in this configuration.

Borrowing from the idea of skip lists [40], SkipNet [35]
nodes store information about predecessor and successor nodes
in a skip list. Nodes maintain points to neighboring nodes in
the same subject area (i.e., similar hashed key identifiers), as
well as pointers that skip over a number of levels of records.
Nodes at levelh from a source node are2h nodes to the left
or right of the source node. The nodes are organized into a
hierarchy of rings. The root ring contains pointers to sub-rings
(with overlap), with each successive level splitting the ring
into two roughly equal parts. Search is as efficient as Chord
(O(logN )), as the hierarchical ring structure essentially works
like a search tree. Also, because of the highly organized and
ordered nature of the skip lists, SkipNet also supports range
queries. SkipNet nodes tend to store significantly more routing
information than Chord nodes. As a result, search performance
is comparable, but maintenance actions are also more costly
in SkipNet.

The Distributed K-ary System (DKS) [28], [71], [72] builds
structured peer-to-peer overlays using k-ary trees. The identi-
fier space is recursively partitioned into intervals, and modeled
as successive levels of a tree. This tree is then used to navigate
the identifier space when searching for identifiers. Solutions
exist to provide replication free broadcast and multicast,and
updates are handled with a combination of change on use and
correct on change semantics. This system is elegant and simple
in its representation, however it does not scale due to higher
level nodes holding more knowledge of the identifier space,
with level zero maintaining a copy of the entire identifier
space. Additionally, the system must be initialized with a
maximum node value, and we have found no discussion of
rebuilding the network with larger maximum values at runtime.

Kelips [30] segments the network intoO(
√

N) affinity
groups. Nodes in each group maintain a small constant number
of links to other nodes in the same and foreign affinity groups.
The number of affinity groups (

√
N ) helps to ensure that each

group maintains at least one link to each other group. Groups
are divided by a uniform partitioning of the key space (using
consistent hashing), and withO(

√
N) memory space per node,

O(1) lookups are achievable in a steady state system. Nodes
use epidemic/gossip protocols to perform maintenance actions,

with a fixed bandwidth limitation to prevent flooding. The
system has been shown to be resilient in the face of failed
nodes in networks of moderate size (100,000 nodes).

The Symphony protocol extends the small world principle
by recognizing that increasing the number of long distance
links, k, can lead to improved performance. The authors
show that by choosing thek long distance links along a
Probability Distribution Function (pdf) ofpn(x) = 1/(xln N ),
with x ∈ [ 1

N
, 1], and 0 otherwise, that the average query

length of searches scales withO( 1

k
log2N ) hops. This pdf

is a harmonic function, by which the name Symphony is
inspired. Symphony distributes nodes uniformly around a ring
structure, and provides subtle optimizations such as look ahead
(piggy-backing control information on pings), fault tolerance
algorithms, runtime parameter tuning, and load balancing.

XI. H IERARCHICAL PEER-TO-PEER OVERLAYS

HP2P overlay structures combine flat P2P systems together
to form a hierarchy of P2P systems. Two-layer HP2P systems
provide a top-level topology for indexing into second layer
P2P networks. HP2P systems can also be organized into arbi-
trarily many layers to provide further scaling and organization.
Each cluster, or group, in a HP2P network is a separate P2P
network, and contains one or more super peers. A super peer
is a node in a cluster that is given additional responsibilities,
such as decision authority, message routing to other clusters,
or maintaining replicated copies of distributed data structures.
Super peers are normally chosen by their superior reliability
or performance characteristics. The super peers from two or
more clusters interconnect to form another P2P network, and
this process may be repeated many times to form a hierarchy
of P2P networks.

Garces-Erice et al. [73] demonstrate that even adding a
single P2P layer to an existing P2P architecture can improve
the lookup path of searches by a factor of logN / log I,
whereN is the total number of peers in the system andI is the
number of clusters. Their system consists of two layers: a ”top-
level Chord” ring of super peers in a modified Chord overlay,
and a second layer of multiple heterogeneous structured P2P
overlays. The authors specifically cite four advantages of this
approach:

• Provides transparency: data may move around and nodes
may join or leave the network in each cluster, but the
overall system is unaffected because each cluster is in-
dependently managed. This leads to improved reliability
and search consistency.

• Significantly improves the average path length due to the
hierarchical organization.

• Consumes less bandwidth than traditional P2P structured
overlays under stable conditions. This occurs in HP2P
networks whose clusters are formed based on network
locality (such as TSO [74] and Brocade [75]). In these sit-
uations, clusters spend more time performing intra-cluster
communications, leading to fewer long haul messages.

• Better supports heterogeneity. Each cluster in a HP2P
network is a separate and fully functioning P2P overlay,
such as Chord or Pastry: only super peers need speak the
same language.



14

The Canon project [76] extends this work by providing
methodology for merging structured P2P overlays (Chord,
Symphony, CAN, and Kademlia) into hierarchical structures.
The methods employed also support deterministic bounds on
the degree for nodes in Crescendo, Canon’s adaptation of
Chord, on the order ofO(logN ).

Zöls et al. continue the trend of migration from existing
structured P2P systems (Chord in this case) to hierarchical
systems by analyzing the cost metrics for systems with limited
bandwidth [77], [78], such as mobile devices, and constructing
hierarchical networks to conform to dynamic constraints. Their
system, Chordella, dynamically adjusts the number of super
peers based on available resources so as to create a cost-
optimal value. Chordella also improves upon Freenet’s caching
algorithm by dynamically choosing which nodes along a path
at which to store cached copies of content.

Fiat and Saia [25] have built a HP2P structured overlay
based on a butterfly network [33], shown in Figure 6. They
apply the butterfly topology to build a censorship resistantP2P
overlay structure. They refer to the nodes at each level above
the leaf node level as super peers. Data items are stored at the
leaf nodes, and the geometry of the system yieldsO(logN )
provable search times. The butterfly loses some reconfigura-
bility and fault tolerance, compared to other P2P approaches
presented here, because the interconnectivity between nodes at
higher levels reduces logarithmically to a small number (two).
Therefore, loss of a node at the top level reduces 50% of the
routing redundancy for that segment of the network. The pure
butterfly network approach requiresO(log2N ) messages for a
query, but the multi-butterfly aproach [79] can reduce this to
O(logN ).

Fig. 6. An example butterfly network [25]. There existO(logN ) levels,
where each level is considered a super peer level. Leaf nodesconnect to a
random sampling of nodes at each super peer level to provide redundancy
and fault tolerance.

For DMAS and C2 applications, HP2P systems provide the
important opportunity for separation of function. This is a
critical property in C2 systems, where security of missions
must be strictly maintained and monitored. A separation of
function supports this scenario by imposing quantifiable and
observable boundaries for mission oriented systems, while
at the same time permitting the necessary communications
channels for non-mission related data transfer (management,
coalition formation, etc). It also provides practical restrictions
on the size of the coalition formation problem for large-scale
P2P systems.

Current HP2P overlays combine existing technologies to en-
able distributed communications. However, the body of work

into HP2P overlays has yet to establish its own uniqueness,
wherein approaches are tailored to the specific advantages of
HP2P architectures.

XII. D ESIGN TRADEOFFS

When examining Table II, perhaps the most obvious distinc-
tion is the tradeoff between route hop length and node memory
usage. In general, increasing the amount of node memory
increases performance because nodes have more knowledge
about the global state, and can make better decisions for
routing queries. Unfortunately, these systems tend to have
lesser scalability as large systems will use more memory,
which may be a limiting design factor. In addition, main-
taining each node’s memory state requires higher bandwidth
consumption as the amount of global state stored per node is
increased. Systems such as Accordion offer a nice compromise
by permitting the designer and maintainer to specify runtime
limits for memory and bandwidth, and allowing the network
to tune itself based on bandwidth utilization.

The overlay routing geometry does not appear to directly
affect the scalability of the system. The performance of
systems with similar routing geometries varies based on an
overlay’s goals and implementation. For example, DKS and
Kademlia both use trees for routing, but in different manners,
and their resulting performance differs as a result.

However, the strictness of the overlay rules does seem
to affect the scalability. Systems such as Koorde impose a
rigid set of rules for the locations of nodes and suffer a
penalty for maintenance actions and reorganizing in high churn
or expanding systems. Armed with knowledge of previous
systems, approaches such as Viceroy harness the strengths
of several approaches to create a more resilient and better
performing system than their predecessors. In addition, more
loosely structured solutions exploit their polymorphic nature
to adapt to changing network conditions, but at the expense
of higher maintenance costs.

Although scalability is qualitatively defined, there appears
to be a relationship between query path length and scalability.
Systems that offer much lower query path length, such as
Kelips and One-Hop, also suffer in scalability. This is tied
to the means necessary to acquire a significant advantage in
query path length: increased memory usage and associated
maintenance bandwidth. While these systems are designed for
performance in smaller systems, large-scale systems will suffer
an indirect negative impact at the expense of route length.
Although the route length is not the cause of the lack of
scalability, there exists a correlation between the two.

In communications structured P2P overlay networks, all
nodes are identified through some unique identifier. Some of
the approaches discussed here use a distributed algorithm to
ensure uniqueness of the node identifiers, while others relyon
the uniqueness of a node’s properties combined with a hashing
algorithm to generate the identifier. Whichever method is used,
and so long as the addresses are generated dynamically, does
not appear to directly affect the performance attributes of
the system. In addition, several systems offer the advantage
of allowing hashing mechanisms to be substituted, which
increases their flexibility.



15

The (network) physical distances between nodes must be
considered before choosing an approach. Many of the ap-
proaches described here rely upon a number of local neighbor
links and long haul links to establish smaller network diame-
ters for improved search efficiency. While this works well ina
local system with high bandwidth links, reliability can suffer
when connecting large groups of peers across long distances
[36]. This happens when many long haul links attempt to
span the network by using lower bandwidth links. This self-
organization property is addressed in more detail in many
HP2P systems [80], [81], but less so in flat P2P systems.

HP2P overlays provide additional opportunities for hetero-
geneity and autonomy by allowing subordinate organizations
to independently manage and organize their networks accord-
ing to their own missions [73]. This is especially important
for enterprise systems that consist of many separate units,
missions, and available computing architectures – one solution
will not suffice for all scenarios. Network churn (and associ-
ated maintenance) is localized to clusters, and in general does
not affect the large-scale system functionality.

XIII. F UTURE WORK

While many DMAS applications are currently developed
using flat P2P systems, we believe that certain applications
may require a more segmented approach. For example, mili-
tary systems require additional security, which is an area that
many of the current overlay structures have yet to address. One
possibility to facilitating this objective is to adapt existing ap-
proaches to HP2P structures. This topology explicitly provides
an environment which is more suited to security constraints
than existing P2P technologies through clustered isolation. The
clustering of peer groups can be organized in many ways, to
include security access levels or restrictions, which permits
more flexibility in system design.

C2 systems require a stable and reliable communications
infrastructure on top of which to build sophisticated and
resource intensive mission-critical systems. Purely as a com-
munications mechanism, structured P2P systems provide this
necessary functionality. However, elements such as security
have been neglected. We believe that a comprehensive and
effective security solution must be designed into the core of
a P2P communications technology before it will be widely
accepted into enterprise use.

The issue of security in a large-scale system of peers is
complicated by key storage and knowledge, rooted in the
difficulty in establishing a foundation of trust [82]. Trust
chaining in a system of peers suffers from the idea that any
node could be weaker, in terms of trust, than other nodes, and
therefore the entire chain of communication after that nodehas
a lower trust level. That is, a trust chain is only as strong as
its weakest link. This problem exists in epidemic proportions
in a large-scale system which relies on communications with
long hop lengths and few authoritative sources.

Many P2P systems propagate key identifiers whenever pos-
sible to improve search efficiency. While this is a desirabletrait
from a purely performance standpoint, it creates difficulties
in systems which rely on compartmentalized security. The

replication of keys in such systems must be restricted to
certain areas of the network, which will require further design
effort for the current class of communications structured P2P
systems. Likewise, malicious nodes may advertise faulty keys,
which can then be difficult to revoke given the widespread
replication of those keys across the network.

The challenges of task allocation and coordination with
partial visibility is still an active area of research for large-scale
DMASs and P2P systems [83], [84], and will be our immediate
focus. The difficulty of such a problem is compounded by
constrained visibility of nodes in the network, greatly compli-
cating allocation of resources and coordination of nodes inthe
system. The formal model of this problem isNP-hard [3], [8],
and current solutions do not scale to the size of existing P2P
structured overlay networks [83], [85]–[87]. Beyond simply
sharing of data between nodes, new methods for distributing
tasks must be developed to maintain the momentum of the
usefulness of large-scale P2P systems.

Tangent to the task allocation problem are the resource
distribution and task scheduling problems. Much thought has
been put into these challenges, but few currently examine the
scale reached by large P2P systems. These problems, like
the task allocation problem, are made more difficult through
partial visibility in the system, including participants as well
as tasks and resources. These problems are often framed as
distributed constraint optimization problems whose solutions
can, in many cases, be directly mutated to use P2P overlays.
However, specific attention must be given to account for the
scaling of modern peer based networks.

HP2P overlays may be able to facilitate a leap forward
in realizing large-scale task allocation algorithms. Withthe
clustered separation of groups by location, interest, specialty,
or other criteria, HP2P systems provide an explicit and ordered
framework of participants in large-scale teams. While thiswill
not break the theoretical bounds of the coalition formation
and task allocation problems, it may provide a framework for
generating useful large-scale solutions that are tractable.

Viceroy has capitalized on the intersection of multiple
routing geometries, Chordella has combined multiple instances
of Chord to form a HP2P system, and others are following
suit. What other properties can be gained, and feature sets
improved, by combining technologies? Innovative ideas and
adaptations of previous work contribute to the body of struc-
tured overlay research, with considerable success in improving
runtime performance and providing additional design choices
for system designers and application developers. We believe
that this trend will continue with HP2P systems, allowing
developers to design and field flexible large-scale C2 appli-
cations.

XIV. C ONCLUDING REMARKS

The early generations of P2P networks satisfy the require-
ment to share data without formal administrators or manage-
ment of a complex set of hardware and software systems.
Rather, they provide a usable and novel technique for sharing
data with affordable and available systems. However, with
increased popularity came problems with scalability. Early



16

broadcast-based approaches persist today in the form of suc-
cessful systems like Freenet, while less robust approachessuch
as KaZaa and Gnutella have waned in popularity. Despite this
trend, they may still be useful to individuals or groups seeking
small-scale and easy to use systems with little maintenance
overhead.

Subsequent generations of P2P systems have grown in scal-
ability as well as functionality. With improved feature sets has
come increased maintenance, both by the user and the agents
of the system. However, reduced bandwidth consumption and
increased convenience and reliability have stimulated a rapid
growth in the use of these systems. This trend continues today,
and we envision it to continue, and even strengthen, in coming
years.

The current generation of P2P systems is built upon an
infrastructure of reliable and scalable communications sys-
tems. This frees the designer to continue the creative cycle
and natural evolution of P2P based systems into architectures
for heterogeneous application development and deploymentin
the hobbyist and low-security environments. However, we be-
lieve that comprehensive security solutions must be developed
before the enterprise world will begin to seriously consider
and adopt P2P systems for their business platforms.

The framework in which to both command and control
systems of agents in large-scale P2P systems is present,
although building scalable algorithms for distributed coordi-
nation remains an active area of study. Our research continues
into developing the principles and techniques that will govern
the prosecution of large-scale C2 in P2P systems.

REFERENCES

[1] E. Adar and B. A. Huberman, “Free riding on gnutella,”First Monday,
vol. 5, 2000.

[2] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A dis-
tributed anonymous information storage and retrieval system,” Lecture
Notes in Computer Science, vol. 2009, pp. 46–63, 2001.

[3] B. P. Gerkey and M. J. Mataric, “A formal analysis and taxonomy of
task allocation in multi-robot systems,”International Journal of Robotics
Research, vol. 23, pp. 939–954, September 2004.

[4] H. Chalupsky, Y. Gil, C. A. Knoblock, K. Lerman, J. Oh, D. V. Pynadath,
T. A. Russ, and M. Tambe, “Electric elves: Applying agent technology
to support human organizations,” inProceedings of the Thirteenth Con-
ference on Innovative Applications of Artificial Intelligence Conference.
AAAI Press, 2001, pp. 51–58.

[5] K. M. Stanney, R. R. Mourant, and R. S. Kennedy, “Human factors
issues in virtual environments: A review of the literature,” Presence:
Teleoper. Virtual Environ., vol. 7, no. 4, pp. 327–351, 1998.

[6] A. Barella, C. Carrascosa, V. Botti, and M. Martı́, “Multi-agent systems
applied to virtual environments: a case study,” inVRST ’07: Proceedings
of the 2007 ACM symposium on Virtual reality software and technology.
New York, NY, USA: ACM, 2007, pp. 237–238.

[7] N. Tao, J. Baxter, and L. Weaver, “A multi-agent policy-gradient ap-
proach to network routing,” inICML ’01: Proceedings of the Eighteenth
International Conference on Machine Learning. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2001, pp. 553–560.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,Introduction
to Algorithms, 2nd ed. The MIT Press, 2001.

[9] B. Yang and H. Garcia-Molina, “Designing a super-peer network,” icde,
vol. 00, p. 49, 2003.

[10] [Online]. Available: http://www.cisco.com
[11] S. Milgram, “The small world problem,”Psychology Today, no. 2, pp.

60–67, 1967.
[12] J. Kleinberg, “The small-world phenomenon: An algorithmic perspec-

tive,” in in Proceedings of the 32nd ACM Symposium on Theory of
Computing, 2000, pp. 163–170.

[13] Y. U. Cao, A. S. Fukunaga, and A. B. Kahng, “Cooperative mobile
robotics: Antecedents and directions,”Autonomous Robots, vol. 4, no. 1,
pp. 7–23, March 1997.

[14] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “A taxonomy for multi-
agent robotics,” 1996.

[15] K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and
comparison of peer-to-peer overlay network schemes,”Communications
Surveys & Tutorials, IEEE, pp. 72–93, 2005.

[16] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peersystems,” in
Middleware ’01: Proceedings of the IFIP/ACM InternationalConference
on Distributed Systems Platforms Heidelberg. London, UK: Springer-
Verlag, 2001, pp. 329–350.

[17] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz,
“Tapestry: A resilient global-scale overlay for service deployment,”
2003.

[18] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker,
and I. Stoica, “The impact of dht routing geometry on resilience and
proximity,” in SIGCOMM ’03: Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for computer
communications. New York, NY, USA: ACM, 2003, pp. 381–394.

[19] “Gnutella,” Internet. [Online]. Available: http://gnutella.wego.com
[20] B. Cohen, “Bittorrent protocol specification v1.0,” WWW, June.
[21] F. E. Bustamante and Y. Qiao, “Designing less-structured p2p systems

for the expected high churn,”Networking, IEEE/ACM Transactions on,
vol. 16, no. 3, pp. 617–627, June 2008.

[22] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh, “Graph-theoretic
analysis of structured peer-to-peer systems: routing distances and fault
resilience,” inSIGCOMM ’03: Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for computer
communications. New York, NY, USA: ACM, 2003, pp. 395–406.

[23] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek, “Bandwidth-efficient
management of dht routing tables,” inNSDI’05: Proceedings of the 2nd
conference on Symposium on Networked Systems Design & Implemen-
tation. Berkeley, CA, USA: USENIX Association, 2005, pp. 99–114.

[24] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn
in a dht,” in ATEC ’04: Proceedings of the annual conference on
USENIX Annual Technical Conference. Berkeley, CA, USA: USENIX
Association, 2004, pp. 10–10.

[25] A. Fiat and J. Saia, “Censorship resistant peer-to-peer content address-
able networks,” inSODA ’02: Proceedings of the thirteenth annual
ACM-SIAM symposium on Discrete algorithms. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 2002, pp. 94–103.

[26] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A
scalable content-addressable network,” inSIGCOMM ’01: Proceedings
of the 2001 conference on Applications, technologies, architectures, and
protocols for computer communications. New York, NY, USA: ACM,
2001, pp. 161–172.

[27] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of the 2001 ACM SIGCOMM Conference, 2001, pp. 149–
160.

[28] L. O. Alima, A. Ghodsi, and S. Haridi, “A framework for structured
peer-to-peer overlay networks,”Lecture Notes in Computer Science, vol.
3267, pp. 223–250, 2004.

[29] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer informa-
tion system based on the xor metric,” inIPTPS ’01: Revised Papers from
the First International Workshop on Peer-to-Peer Systems. London, UK:
Springer-Verlag, 2002, pp. 53–65.

[30] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Renesse, “Kelips:
Building an efficient and stable P2P DHT through increased memory
and background overhead,” inProceedings of the 2nd International
Workshop on Peer-to-Peer Systems (IPTPS ’03), 2003.

[31] M. F. Kaashoek and D. R. Karger, “Koorde: A simple degree-optimal
distributed hash table,” inProceedings of the 2nd International Workshop
on Peer-to-Peer Systems (IPTPS ’03), 2003.

[32] A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: supporting
scalable multi-attribute range queries,”SIGCOMM Comput. Commun.
Rev., vol. 34, no. 4, pp. 353–366, 2004.

[33] A. Gupta, B. Liskov, and R. Rodrigues, “Efficient routing for peer-to-
peer overlays,” inNSDI’04: Proceedings of the 1st conference on Sym-
posium on Networked Systems Design and Implementation. Berkeley,
CA, USA: USENIX Association, 2004, pp. 9–9.

[34] K. Aberer, “P-grid: A self-organizing access structure for p2p informa-
tion systems,” inIn CoopIS, 2001, pp. 179–194.

[35] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A.Wolman,
“Skipnet: a scalable overlay network with practical locality properties,”



17

in USITS’03: Proceedings of the 4th conference on USENIX Symposium
on Internet Technologies and Systems. Berkeley, CA, USA: USENIX
Association, 2003, pp. 9–9.

[36] G. S. Manku, M. Bawa, and P. Raghavan, “Symphony: distributed hash-
ing in a small world,” inUSITS’03: Proceedings of the 4th conference on
USENIX Symposium on Internet Technologies and Systems. Berkeley,
CA, USA: USENIX Association, 2003, pp. 10–10.

[37] D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: a scalable and dynamic
emulation of the butterfly,” inPODC ’02: Proceedings of the twenty-first
annual symposium on Principles of distributed computing. New York,
NY, USA: ACM, 2002, pp. 183–192.

[38] D. H. Wolpert and W. G. Macready, “No free lunch theoremsfor search,”
Santa Fe Institute, Working Papers 95-02-010, Feb. 1995.

[39] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web,” inSTOC ’97:
Proceedings of the twenty-ninth annual ACM symposium on Theory of
computing. New York, NY, USA: ACM, 1997, pp. 654–663.

[40] E. Horowitz, S. Sahni, and S. Rajasckaran,Computer Algorithms: C++.
New York, NY, USA: W. H. Freeman & Co., 1996.

[41] V. Kumar, A. Grama, A. Gupta, and G. Karypis,Introduction to parallel
computing: design and analysis of algorithms. Redwood City, CA,
USA: Benjamin-Cummings Publishing Co., Inc., 1994.

[42] S. Ateconi, D. Hales, and O. Babaoglu, “Broadcasting atthe critical
threshold in peer-to-peer networks,” University of Bologna, Department
of Computer Science University of Bologna Mura Anteo Zamboni 7
40127 Bologna (Italy), Tech. Rep., March 2007.

[43] V. Vishnevsky, A. Safonov, M. Yakimov, E. Shim, and A. D.Gelman,
“Scalable blind search and broadcasting in peer-to-peer networks,” in
P2P ’06: Proceedings of the Sixth IEEE International Conference on
Peer-to-Peer Computing. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 259–266.

[44] M. Ripeanu, A. Iamnitchi, and I. Foster, “Mapping the gnutella network,”
IEEE Internet Computing, vol. 6, no. 1, pp. 50–57, 2002.

[45] D. Zeinalipour-Yatzi and T. Folias, “A quantitative analysis of the
gnutella network traffic,” 2002.

[46] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti, “A local search
mechanism for peer-to-peer networks,” inCIKM ’02: Proceedings of
the eleventh international conference on Information and knowledge
management. New York, NY, USA: ACM, 2002, pp. 300–307.

[47] G. F. Coulouris and J. Dollimore,Distributed systems: concepts and
design. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1988.

[48] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search andreplication
in unstructured peer-to-peer networks,” inICS ’02: Proceedings of the
16th international conference on Supercomputing. New York, NY,
USA: ACM, 2002, pp. 84–95.

[49] S. Vuong and J. Li, “Efa: An efficient content routing algorithm in
large peer-to-peer overlay networks,” inP2P ’03: Proceedings of the
3rd International Conference on Peer-to-Peer Computing. Washington,
DC, USA: IEEE Computer Society, 2003, p. 216.

[50] B. Krishnamurthy, J. Wang, and Y. Xie, “Early measurements of a
cluster-based architecture for p2p systems,” inIMW ’01: Proceedings
of the 1st ACM SIGCOMM Workshop on Internet Measurement. New
York, NY, USA: ACM, 2001, pp. 105–109.

[51] S. Saroiu, K. P. Gummadi, and S. D. Gribble, “Measuring and analyzing
the characteristics of napster and gnutella hosts,”Multimedia Syst.,
vol. 9, no. 2, pp. 170–184, 2003.

[52] N. Leibowitz, M. Ripeanu, and A. Wierzbicki, “Deconstructing the kazaa
network,” in WIAPP ’03: Proceedings of the The Third IEEE Workshop
on Internet Applications. Washington, DC, USA: IEEE Computer
Society, 2003, p. 112.

[53] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié, “Scamp: Peer-to-peer
lightweight membership service for large-scale group communication,”
in NGC ’01: Proceedings of the Third International COST264 Workshop
on Networked Group Communication. London, UK: Springer-Verlag,
2001, pp. 44–55.

[54] H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi,
and M. Dahlin, “Bar gossip,” inUSENIX’06: Proceedings of the 7th
conference on USENIX Symposium on Operating Systems Designand
Implementation. Berkeley, CA, USA: USENIX Association, 2006, pp.
14–14.

[55] M. Abdallah and L. Temal, “Gridb: A scalable distributed database
sharing system for grid environments,” Paris University, 8, rue du
Capitaine Scott 75015 Paris, France, Tech. Rep., 2003.

[56] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer
content distribution technologies,”ACM Comput. Surv., vol. 36, no. 4,
pp. 335–371, 2004.

[57] J. Lu and J. Callan, “Federated search of text-based digital libraries in
hierarchical peer-to-peer networks,” inroceedings of the 27th European
Conference on Information Retrieval, 2004.

[58] ——, “Content-based peer-to-peer network overlay for full-text fed-
erated search,” inProceedings of the Eighth Recherche d’Information
Assistee par Ordinateur (RIAO) Conference, 2006.

[59] H. Zhang, W. B. Croft, B. Levine, and V. Lesser, “A multi-agent
approach for peer-to-peer based information retrieval system,” aamas,
vol. 01, pp. 456–463, 2004.

[60] H. Zhang and V. Lesser, “A dynamically formed hierarchical agent
organization for a distributed content sharing system,” inIAT ’04:
Proceedings of the Intelligent Agent Technology, IEEE/WIC/ACM In-
ternational Conference on (IAT’04). Washington, DC, USA: IEEE
Computer Society, 2004, pp. 169–175.

[61] ——, “Multi-agent based peer-to-peer information retrieval systems with
concurrent search sessions,” inAAMAS ’06: Proceedings of the fifth
international joint conference on Autonomous agents and multiagent
systems. New York, NY, USA: ACM Press, 2006, pp. 305–312.

[62] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic,M. Hauswirth,
M. Punceva, and R. Schmidt, “P-grid: a self-organizing structured p2p
system,”SIGMOD Rec., vol. 32, no. 3, pp. 29–33, 2003.

[63] X. Bao, B. Fang, M. Hu, and B. Xu, “Heterogeneous search in
unstructured peer-to-peer networks,”IEEE Distributed Systems Online,
vol. 6, no. 2, p. 1, 2005.

[64] E. Brunskill, “Building peer-to-peer systems with chord, a distributed
lookup service,” inHOTOS ’01: Proceedings of the Eighth Workshop
on Hot Topics in Operating Systems. Washington, DC, USA: IEEE
Computer Society, 2001, p. 81.

[65] C. Kaufman, R. Perlman, and M. Speciner,Network security: PRIVATE
communication in a PUBLIC world. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2002.

[66] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil, “A
performance vs. cost framework for evaluating dht design tradeoffs under
churn.” in INFOCOM. IEEE, 2005, pp. 225–236.

[67] Wikipedia, “De bruijn graph,” Internet. [Online]. Available:
http://en.wikipedia.org/wiki/DeBruijngraph

[68] M. Castro, P. Druschel, Y. Charlie, and H. A. Rowstron, “Exploiting
network proximity in peer-to-peer overlay networks,” Tech. Rep., 2002.

[69] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, andR. Morris,
“Designing a dht for low latency and high throughput,” inNSDI’04:
Proceedings of the 1st conference on Symposium on NetworkedSystems
Design and Implementation. Berkeley, CA, USA: USENIX Association,
2004, pp. 7–7.

[70] WikiPedia, “Kademlia,” WWW, June 2008. [Online]. Available:
http://en.wikipedia.org/wiki/Kademlia

[71] A. Ghodsi, L. Alima, S. El-Ansary, P. Brand, and S. Haridi, “Self-
correcting broadcast in distributed hash tables,” 2003.

[72] A. Ghodsi, L. O. Alima, and S. Haridi, “Low-bandwidth topology main-
tenance for robustness in structured overlay networks,” inHICSS ’05:
Proceedings of the Proceedings of the 38th Annual Hawaii International
Conference on System Sciences (HICSS’05) - Track 9. Washington, DC,
USA: IEEE Computer Society, 2005, p. 302.1.

[73] L. Garces-Erice, E. W. Biersack, K. W. Ross, P. A. Felber, and G. Urvoy-
Keller, “Hierarchical p2p systems,” inProceedings of ACM/IFIP Inter-
national Conference on Parallel and Distributed Computing(Euro-Par),
Klagenfurt, Austria, 2003.

[74] G. Xue, Y. Jiang, Y. You, and M. Li, “A topology-aware hierarchical
structured overlay network based on locality sensitive hashing scheme,”
in UPGRADE ’07: Proceedings of the second workshop on Use of P2P,
GRID and agents for the development of content networks. New York,
NY, USA: ACM, 2007, pp. 3–8.

[75] B. Y. Zhao, Y. Duan, L. Huang, A. D. Joseph, and J. Kubiatowicz,
“Brocade: Landmark routing on overlay networks,” inIPTPS ’01:
Revised Papers from the First International Workshop on Peer-to-Peer
Systems. London, UK: Springer-Verlag, 2002, pp. 34–44.

[76] P. Ganesan, K. Gummadi, and H. Garcia-Molina, “Canon ing major:
Designing dhts with hierarchical structure,” inICDCS ’04: Proceedings
of the 24th International Conference on Distributed Computing Systems
(ICDCS’04). Washington, DC, USA: IEEE Computer Society, 2004,
pp. 263–272.

[77] S. Zoels, Z. Despotovic, and W. Kellerer, “On hierarchical dht systems -
an analytical approach for optimal designs,”Comput. Commun., vol. 31,
no. 3, pp. 576–590, 2008.



18

[78] Q. Hofstätter, S. Zöls, M. Michel, Z. Despotovic, andW. Kellerer,
“Chordella - a hierarchical peer-to-peer overlay implementation for
heterogeneous, mobile environments,” inP2P ’08: Proceedings of
the 2008 Eighth International Conference on Peer-to-Peer Computing.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 75–76.

[79] M. Datar, “Butterflies and peer-to-peer networks,” inESA ’02: Proceed-
ings of the 10th Annual European Symposium on Algorithms. London,
UK: Springer-Verlag, 2002, pp. 310–322.

[80] S. Zöls, R. Schollmeier, W. Kellerer, and A. Tarlano, “The hybrid
chord protocol: A peer-to-peer lookup service for context-aware mobile
applications,” inNetworking – ICN 2005. 4th International Conference
on Networking, Proceedings, Part II, ser. Lecture Notes in Computer
Science, P. Lorenz and P. Dini, Eds., vol. 3421. Berlin Heidelberg:
Springer-Verlag, April 2005, pp. 781–792.

[81] S. Zoels, S. Schubert, W. Kellerer, and Z. Despotovic, “Hybrid dht
design for mobile environments,” pp. 19–30, 2008.

[82] D. S. Wallach, “A survey of peer-to-peer security issues,” in In Interna-
tional Symposium on Software Security, 2002, pp. 42–57.

[83] O. Shehory and S. Kraus, “Coalition formation among autonomous
agents: Strategies and complexity (preliminary report),”in From Reac-
tion to Cognition — Fifth European Workshop on Modelling Autonomous
Agents in a Multi-Agent World, MAAMAW-93 (LNAI Volume 957),
C. Castelfranchi and J.-P. Müller, Eds. Springer-Verlag:Heidelberg,
Germany, 1995, pp. 56–72.

[84] S. P. Ketchpel, “Forming coalitions in the face of uncertain rewards,” in
National Conference on Artificial Intelligence, 1994, pp. 414–419.

[85] E. Winter,The Handbook of Game Theory. North-Holldand, 2002, ch.
The Shapley Value, pp. 2026–2052.

[86] O. Shehory and S. Kraus, “Task allocation via coalitionformation
among autonomous agents,” inProceedings of the Fourteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-95), Montréal,
Québec, Canada, 1995, pp. 655–661.

[87] B. P. Gerkey, “On multi-robot task allocation,” Ph.D. dissertation,
University of Southern California, August 2003.

Daniel R. Karrels is a Captain in the United
States Air Force. He earned his B.S. and M.S. de-
grees in Computer Engineering at the University
of Florida, and is a PhD student at the Air Force
Institute of Technology. He is a member of the
Tau Beta Pi and Eta Kappa Nu national honor
societies. He is studying autonomous command
and control in large scale distributed systems.

Gilbert ’Bert’ Peterson is an Assistant Professor
of Computer Engineering at the Air Force Insti-
tute of Technology. Dr. Peterson received a BS
degree in Architecture, and an M.S and Ph.D in
Computer Science at the University of Texas at
Arlington. He teaches and conducts research in
digital forensics, and artificial intelligence.

Barry E. Mullins is an Assistant Professor of
Computer Engineering in the Department of
Electrical and Computer Engineering, Air Force
Institute of Technology, Wright-Patterson AFB
OH. He received a B.S. in Computer Engineering
(cum laude) from the University of Evansville in
1983, an M.S. in Computer Engineering from the
Air Force Institute of Technology in 1987, and
a Ph.D. in Electrical Engineering from Virginia
Polytechnic Institute and State University in 1997.
He served 21 years in the Air Force teaching at

the U.S. Air Force Academy for seven of those years. He is a registered
Professional Engineer in Colorado and a member of Eta Kappa Nu, Tau
Beta Pi, IEEE (senior member), and ASEE. His research interests include
cyber operations, computer communication networks, embedded (sensor)
and wireless networking, and reconfigurable computing systems.


